GAN生成MNIST数据集(pytorch版)

前言

最近准备研究关于用GAN神经网络实现图片超分辨的项目,为了理解GAN神经网络的内涵和更熟悉的掌握pytorch框架的用法,写了这个小demo熟悉手感

思想

GAN的思想是是一种二人零和博弈思想,网上比较流行的一种比喻就是生成模型(G)是印假钞的人,而判别模型(D)就是判断是否是假钞的警察。

  • 判别网络的目的:就是能判别输入的数据(如图片)它是来自真实样本集还是假样本集。假如输入的是真样本,网络输出就接近1,输入的是假样本,网络输出接近0,那么很完美,达到了很好判别的目的。
  • 生成网络的目的:生成网络是造样本的,它的目的就是使得自己造样本的能力尽可能强,强到判别网络没法判断我是真样本还是假样本。
    在这里插入图片描述

代码实现

talk is cheap,show me your code

# coding=utf-8
import torch.autograd
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
from torchvision import datasets
from torchvision.utils import save_image
import os

# 创建文件夹
if not os.path.exists('./img2'):
    os.mkdir('./img2')


def to_img(x):
    out = 0.5 * (x + 1)
    out = out.clamp(0, 1)  # Clamp函数可以将随机变化的数值限制在一个给定的区间[min, max]内:
    out = out.view(-1, 1, 28, 28)  # view()函数作用是将一个多行的Tensor,拼接成一行
    return out


batch_size = 128
num_epoch = 1000
z_dimension = 50
# 图像预处理
img_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1,), (0.5,))
])
# mnist dataset mnist数据集下载,没有下载的将download改成True
mnist = datasets.MNIST(
    root='./mnist/', train=True, transform=img_transform, download=False
)
# data loader 数据载入
dataloader = torch.utils.data.DataLoader(
    dataset=mnist, batch_size=batch_size, shuffle=True
)


# 定义判别器  #####Discriminator######使用多层网络来作为判别器
# 将图片28x28展开成784,然后通过多层感知器,中间经过斜率设置为0.2的LeakyReLU激活函数,
# 最后接sigmoid激活函数得到一个0到1之间的概率进行二分类。
class discriminator(nn.Module):
    def __init__(self):
        super(discriminator, self).__init__()
        self.dis = nn.Sequential(
            nn.Linear(784, 512),  # 输入特征数为784,输出为512
            nn.BatchNorm1d(512),
            nn.LeakyReLU(0.2),  # 进行非线性映射
            nn.Linear(512, 256),  # 进行一个线性映射
            nn.BatchNorm1d(256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 1),
            nn.Sigmoid()  # 也是一个激活函数,二分类问题中,
            # sigmoid可以班实数映射到【0,1】,作为概率值,
            # 多分类用softmax函数
        )

    def forward(self, x):
        x = self.dis(x)
        return x


####### 定义生成器 Generator #####
# 输入一个50维的0~1之间的高斯分布,然后通过第一层线性变换将其映射到256维,
# 然后通过LeakyReLU激活函数,接着进行一个线性变换,再经过一个LeakyReLU激活函数,
# 然后经过线性变换将其变成784维,最后经过Tanh激活函数是希望生成的假的图片数据分布
# 能够在-1~1之间。
class generator(nn.Module):
    def __init__(self):
        super(generator, self).__init__()
        self.gen = nn.Sequential(
            nn.Linear(50, 128),
            nn.LeakyReLU(0.2),
            nn.Linear(128, 256),
            nn.BatchNorm1d(256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 512),
            nn.BatchNorm1d(512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, 1024),
            nn.BatchNorm1d(1024),
            nn.LeakyReLU(0.2),
            nn.Linear(1024, 784),
            nn.Tanh()
        )

    def forward(self, x):
        x = self.gen(x)
        return x

# 创建对象
D = discriminator()
G = generator()
if torch.cuda.is_available():
    D = D.cuda()
    G = G.cuda()
#########判别器训练train#####################
# 分为两部分:1、真的图像判别为真;2、假的图像判别为假
# 此过程中,生成器参数不断更新
# 首先需要定义loss的度量方式  (二分类的交叉熵)
# 其次定义 优化函数,优化函数的学习率为0.0003
criterion = nn.BCELoss()  # 是单目标二分类交叉熵函数
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0003)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0003)
###########################进入训练##判别器的判断过程#####################
for epoch in range(num_epoch):  # 进行多个epoch的训练
    for i, (img, _) in enumerate(dataloader):
        num_img = img.size(0)
        # view()函数作用是将一个多行的Tensor,拼接成一行
        # 第一个参数是要拼接的tensor,第二个参数是-1
        # =============================训练判别器==================
        img = img.view(num_img, -1)  # 将图片展开为28*28=784
        real_img = Variable(img).cuda()  # 将tensor变成Variable放入计算图中
        real_label = Variable(torch.ones(num_img)).cuda()  # 定义真实的图片label为1
        fake_label = Variable(torch.zeros(num_img)).cuda()  # 定义假的图片的label为0
        # 计算真实图片的损失
        real_out = D(real_img)  # 将真实图片放入判别器中
        d_loss_real = criterion(real_out, real_label)  # 得到真实图片的loss
        real_scores = real_out  # 得到真实图片的判别值,输出的值越接近1越好
        # 计算假的图片的损失
        z = Variable(torch.randn(num_img, z_dimension)).cuda()  # 随机生成一些噪声
        fake_img = G(z)  # 随机噪声放入生成网络中,生成一张假的图片
        fake_out = D(fake_img)  # 判别器判断假的图片
        d_loss_fake = criterion(fake_out, fake_label)  # 得到假的图片的loss
        fake_scores = fake_out  # 得到假图片的判别值,对于判别器来说,假图片的损失越接近0越好
        # 损失函数和优化
        d_loss = d_loss_real + d_loss_fake  # 损失包括判真损失和判假损失
        d_optimizer.zero_grad()  # 在反向传播之前,先将梯度归0
        d_loss.backward()  # 将误差反向传播
        d_optimizer.step()  # 更新参数
        # ==================训练生成器============================
        ################################生成网络的训练###############################
        # 原理:目的是希望生成的假的图片被判别器判断为真的图片,
        # 在此过程中,将判别器固定,将假的图片传入判别器的结果与真实的label对应,
        # 反向传播更新的参数是生成网络里面的参数,
        # 这样可以通过更新生成网络里面的参数,来训练网络,使得生成的图片让判别器以为是真的
        # 这样就达到了对抗的目的
        # 计算假的图片的损失
        z = Variable(torch.randn(num_img, z_dimension)).cuda()  # 得到随机噪声
        fake_img = G(z)  # 随机噪声输入到生成器中,得到一副假的图片
        #
        output = D(fake_img)  # 经过判别器得到的结果
        g_loss = criterion(output, real_label)  # 得到的假的图片与真实的图片的label的loss
        # bp and optimize
        g_optimizer.zero_grad()  # 梯度归0
        g_loss.backward()  # 进行反向传播
        g_optimizer.step()  # .step()一般用在反向传播后面,用于更新生成网络的参数
        # 打印中间的损失
        if (i + 1) % 100 == 0:
            print('Epoch[{}/{}],d_loss:{:.6f},g_loss:{:.6f} '
                  'D real: {:.6f},D fake: {:.6f}'.format(
                epoch, num_epoch, d_loss.data.item(), g_loss.data.item(),
                real_scores.data.mean(), fake_scores.data.mean()  # 打印的是真实图片的损失均值
            ))
        if epoch == 0 and i==len(dataloader)-1:
            real_images = to_img(real_img.cuda().data)
            save_image(real_images, './img2/real_images.png')
        if i==len(dataloader)-1:
            fake_images = to_img(fake_img.cuda().data)
            save_image(fake_images, './img2/fake_images-{}.png'.format(epoch + 1))
# 保存模型
torch.save(G.state_dict(), './generator.pth')
torch.save(D.state_dict(), './discriminator.pth')

  • 迭代过程如下图,如果不能动的话保存下来应该就可以了:
    在这里插入图片描述
  • 迭代200次后的结果与原图对比如下:
    训练得到结果 原图
    有一说一,MNIST数据集里面手写的数字也是够丑的,我反正没见过有几个人能把数字写成这样。。。难为计算机了
    神经网络的结构只是普通的深层神经网络加入了batch-normal层,有时间的话可以尝试使用卷积神经网络实现,模拟效果应该会更好
  • 11
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
生成 MNIST 数据集深度学习中的一个经典问题,可以使用 GAN(Generative Adversarial Networks)来实现。GAN 是一种无监督学习的方法,它由两个神经网络组成:生成器和判别器。生成器负责生成假的图像,判别器负责判断图像是真实的还是假的。两个网络相互对抗,最终生成器可以生成越来越逼真的图像。 以下是使用 PyTorch 实现 GAN 生成 MNIST 数据集的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader # 定义生成器 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc1 = nn.Linear(100, 256) self.fc2 = nn.Linear(256, 512) self.fc3 = nn.Linear(512, 784) self.relu = nn.ReLU() self.tanh = nn.Tanh() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.tanh(self.fc3(x)) return x # 定义判别器 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.fc1 = nn.Linear(784, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.sigmoid(self.fc3(x)) return x # 定义训练函数 def train(generator, discriminator, dataloader, optimizer_g, optimizer_d, criterion): for epoch in range(100): for i, (real_images, _) in enumerate(dataloader): # 训练判别器 real_labels = torch.ones(real_images.size(0), 1) fake_labels = torch.zeros(real_images.size(0), 1) real_images = real_images.view(real_images.size(0), -1) real_images = real_images.to(device) real_labels = real_labels.to(device) fake_labels = fake_labels.to(device) optimizer_d.zero_grad() real_outputs = discriminator(real_images) real_loss = criterion(real_outputs, real_labels) noise = torch.randn(real_images.size(0), 100) noise = noise.to(device) fake_images = generator(noise) fake_outputs = discriminator(fake_images.detach()) fake_loss = criterion(fake_outputs, fake_labels) d_loss = real_loss + fake_loss d_loss.backward() optimizer_d.step() # 训练生成器 optimizer_g.zero_grad() noise = torch.randn(real_images.size(0), 100) noise = noise.to(device) fake_images = generator(noise) fake_outputs = discriminator(fake_images) g_loss = criterion(fake_outputs, real_labels) g_loss.backward() optimizer_g.step() print('Epoch [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}'.format(epoch+1, 100, d_loss.item(), g_loss.item())) # 加载数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) train_dataloader = DataLoader(train_dataset, batch_size=128, shuffle=True) # 定义超参数 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') lr = 0.0002 betas = (0.5, 0.999) criterion = nn.BCELoss() # 初始化生成器和判别器 generator = Generator().to(device) discriminator = Discriminator().to(device) # 定义优化器 optimizer_g = optim.Adam(generator.parameters(), lr=lr, betas=betas) optimizer_d = optim.Adam(discriminator.parameters(), lr=lr, betas=betas) # 训练模型 train(generator, discriminator, train_dataloader, optimizer_g, optimizer_d, criterion) ``` 在训练完成后,可以使用生成生成假的 MNIST 图像。以下是生成图像的示例代码: ```python import matplotlib.pyplot as plt # 生成假的图像 noise = torch.randn(64, 100) noise = noise.to(device) fake_images = generator(noise).detach().cpu() # 显示图像 fig, ax = plt.subplots(nrows=8, ncols=8, figsize=(10, 10)) for i in range(8): for j in range(8): ax[i][j].imshow(fake_images[i*8+j].view(28, 28), cmap='gray') ax[i][j].axis('off') plt.show() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值