【BI学习心得15-数据分析思维】


1.数据分析

随着大数据的来临,每天都会产生海量的数据。面对如此庞大的数据,如何从其中提取有用的信息?广义的数据分析,包括了多个维度:数据统计、数据挖掘、机器学习、商业逻辑。

从数据(杂乱无章)中汲取有用的信息的方法和工具都叫数据分析,比如数据统计,数据挖掘,机器学习。

在这里插入图片描述
数据分析中,有我们可以概括为四个点:1.描述能力;2.预测能力;3.分析能力;4.自动化。

描述能力,用数据进行描述的能力(业务指标,统计方法)
预测能力,预测用户的画像,销售预测,库存预测,预测性维护
分析能力,了解原因,特征可解释性
自动化,7*24自动工作,持续产生作用(不是一次性)

1)在我们的工作中,有哪些主观描述可以通过数据统计进行量化?
2)在我们的工作中,有哪些是你想要进行预测的?
3)在我们的工作中,有哪些是你想要了解原因的?
导致XXX的原因,有哪些是重要的特征(通过数据分析得出 VS 人的感觉判断)
4)在我们的工作中,有哪些是你想要进行自动化的?

在这里插入图片描述

2.数据分析的问题解决

2.1在做数据分析之前,我们需要思考什么?

数据分析的技术能力(描述、预测、分析、自动化)不是我们的目的,我们的目的是更好地帮助业务,所以第一步我们要从商业的角度理解项目需求

怎样才能帮我们明确商业目标呢?很多时候,我们并不能清晰的定义出来这个目标,就像甲方经常让乙方做出来,然后再给反馈。同行的情况如何,你的排名是怎样的(竞品分析)?其他行业的Case,行业标准,用的多了自然而然成为标准;我们是做选择题 or 简答题?

在这里插入图片描述

2.2明确大目标后(比如提升用户购买转化)该如何工作呢?

Step1,目标如何细分,比如用户落地页购买转化分析;

Step2,方法论 => RoadMap,即数据分析方法;
了解常用的数据分析方法很重要,比如漏斗分析,RFM模型

Step3,计算工具 => 通过数据,完成相关的计算能力,得出报告(结论 + 可视化)

在这里插入图片描述

2.3提一个好的问题,帮你明确目标是什么?

如果没有找到适合的问题,可以通过竞品分析找到你在行业中的位置

2.4了解数据分析的思维方法,制定具体的报告/产品方案

基于人货场的三维度分析(在线销售)

基于AIPL的消费者资产管理(用户运营)

基于Kraljic的采购定位模型(采购)

基于RFM的用户分层策略(用户运营)

2.5掌握技术工具

统计模型,数据挖掘模型,SQL数据管理,BI报表,Python自动化

3.数据分析的目标

  • 在电商领域,数据分析目标是为了辅助业务

  • 战略决策
    报告决策类的,给老板订方向,订目标用,偏宏观

  • 战术决策
    服务对象:一线销售,商务运营,用于做具体的操作。
    具体内容看负责的运营位,昨天的效果和前天效果比,掉下来的原因是什么,还是被别人吸引走了?决定投放和运营策略 (通过报告,报表)。

  • 增长类
    Step1,找到用户,或者潜在用户

Step2,用某种手段去触达

Step3,评估触达效果

Step4,复盘并进一步调整

一整套的体系运营方法,帮品牌利用数据分析进行增长

3.1在线销售数据分析

采用人货场的三维度分析进行探索:围绕用户,围绕商品,围绕渠道。

3.1.1围绕用户
  • 用户质量分析,计算高质量用户贡献的比例(降序,累计,折线图)
  • 用户类别分析(饼图)
  • 用户年龄、性别分析及预测(条形图)
  • 用户人生阶段分析:单身,恋爱,新婚,已婚,育儿,孝敬期
  • 兴趣爱好:烹饪达人,收纳达人,爱包人,速食客……

在这里插入图片描述
利用人群分析,对比大促前后增长情况,重点关注增长明星的群体

3.2围绕商品

通过产品分析了解产品的浏览量、点击量、订单、入篮量、购买用户数等信息,从而帮助企业了解不同商品的用户关注度、购买力等,为产品生命周期分析、产品推广策略提供数据支持。

  • 零售销售额与数量情况(条形图)
  • 打折销售额与数量情况(散点图)
  • 商品退货情况,占比多少(饼状图)
  • 不同产品的数据分析:爆款产品,形象产品,搭配产品

在这里插入图片描述

  • D(设计) -> M(工厂)-> S(供应商)-> B(大商家)-> b(小商家)-> C(消费者)
  • 商品流通环节是:从D到C
  • 零售环节是:从B到C
3.2.1供应链4.0
  • 柔性制造:定制(产品、销售)
  • 没有分销:直销,寄售
  • 即时配送
  • 店即是库、中转仓+前置仓、商品库存一体化
3.3围绕渠道(场)

场,指的是消费的场所/场景

  • 场景运营分析,从用户体验的角度来分析,对各个购物场景进行优化,提升用户的体验,增强用户粘性
  • 内部场景分析:页面项目、内部检索、专题页面、站内广告、页面流量
  • 外部不同渠道的分析
  • 不同维度的分析:
    城市销售额排名,各城市退货率,新店销售额占比

在这里插入图片描述

3.4人货场的核心

新零售场景中的永恒的概念,不论技术如何革新,基本要素都离不开“人、货、场”。

  • 对的人:用户的画像(性别、年龄、人生阶段,兴趣爱好)
  • 对的货:产品的定价、产品搭配(爆款产品、形象产品、搭配产品),仓储配送、供应链管理,分析产品数据(流量、点击、订单、入篮量)
  • 对的场:渠道来源,页面分析,不同店面销售额,城市,商圈,地址

人 货 场 从 维 度 出 发 , 能 否 从 生 命 周 期 出 发 , 分 析 品 牌 的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水花

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值