【高斯分布】01-极大似然估计

高斯分布

输入数据: X = ( x 1 , x 2 , . . . , x n ) T = ( x 1 T x 2 T . . . x n T ) X=(x_1,x_2,...,x_n)^T=\begin{pmatrix} x_1^T\\ x_2^T\\ ... \\ x_n^T\\ \end{pmatrix} X=(x1,x2,...,xn)T=x1Tx2T...xnT
x i ∈ R p , x i   ∼ i i d   N ( μ , Σ ) , θ = ( μ , Σ ) x_i\in R^p,x_i\ \sim^{iid}\ N(μ,Σ),θ=(μ,Σ) xiRp,xi iid N(μ,Σ),θ=(μ,Σ)

iid指独立同分布
回顾:
1.数学期望是对随机变量中心位置的一种度量,是每次实验中可能的结果乘以其结果的总和
E ( x ) = x f ( x ) E(x)=xf(x) E(x)=xf(x)
方差就是这种风险的度量,即随机变量的变异性
E ( x ) = ( x − μ ) f ( x ) E(x)=(x-μ)f(x) E(x)=(xμ)f(x)
2.独立:一个事件的发生不依赖于另外一个事件,两个事件同时发生的概率为P(AB) = P(A)·P(B)
独立同分布:各事件相互独立,但满足同一个概率分布

M L E : θ M L E = a r g m a x ( θ ) P ( X ∣ θ ) MLE:θ_{MLE}=argmax_{(θ)}P(X|θ) MLE:θMLE=argmax(θ)P(Xθ)
令 p = 1 , θ = ( μ , σ 2 ) 令p=1,θ=(μ,\sigma^2) p=1,θ=(μ,σ2)
P ( x ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) P ( x ) = 1 2 π p 2 ∣ ∑ ∣ 1 2 e x p ( − 1 2 ( x − μ ) T ∑ − 1 ( x − μ ) ) ) l o g P ( x ∣ θ ) = l o g ∏ i = 1 N p ( x i ∣ θ ) = ∑ i = 1 N l o g p ( x i ∣ θ ) = ∑ i = 1 N l o g 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) = ∑ i = 1 N [ l o g 1 2 π + l o g 1 σ − ( x i − μ ) 2 2 σ 2 ] μ M L E = a r g m a x μ l o g P ( x ∣ θ ) = a r g m a x ∑ i = 1 N − x i − μ 2 σ 2 = a r g m a x u m i n ∑ i = 1 N − x i − μ 2 σ 2 ∂ ∂ μ ∑ ( x i − μ ) 2 = ∑ i = 1 N 2 ( x i − μ ) ( − 1 ) = 0 ∑ i = 1 N ( x i − μ ) = 0 \begin{array}{lcr} P(x) &=& \frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-μ)^2}{2\sigma^2})\\ P(x) &=& \frac{1}{\sqrt{2\pi}\frac{p}{2}|\sum|^{\frac{1}{2}}}exp(-\frac{1}{2}(x-μ)^T\sum^{-1}(x-μ)))\\\\ logP(x|θ) &=& log\prod_{i=1}^{N}p(x_i|θ)\\ &=& \sum_{i=1}^{N}logp(x_i|θ)\\ &=& \sum_{i=1}^{N}log\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-μ)^2}{2\sigma^2})\\ &=& \sum_{i=1}^{N}[log\frac{1}{\sqrt{2\pi}}+log\frac{1}{\sigma}-\frac{(x_i-μ)^2}{2\sigma^2}]\\\\ μ_{MLE} &=& argmax_{μ} logP(x|θ)\\ &=& argmax\sum_{i=1}^{N}-\frac{x_i-μ}{2\sigma^2}\\ &=& argmax_{u}min\sum_{i=1}{N}-\frac{x_i-μ}{2\sigma^2}\\\\ \frac{\partial}{\partialμ}\sum(x_i-μ)^2 &=& \sum_{i=1}^{N}2(x_i-μ)(-1)=0\\ \sum_{i=1}^{N}(x_i-μ) &=& 0 \end{array} P(x)P(x)logP(xθ)μMLEμ(xiμ)2i=1N(xiμ)===========2π σ1exp(2σ2(xμ)2)2π 2p211exp(21(xμ)T1(xμ)))logi=1Np(xiθ)i=1Nlogp(xiθ)i=1Nlog2π σ1exp(2σ2(xμ)2)i=1N[log2π 1+logσ12σ2(xiμ)2]argmaxμlogP(xθ)argmaxi=1N2σ2xiμargmaxumini=1N2σ2xiμi=1N2(xiμ)(1)=00

μ M L E = 1 N ∑ i = 1 N x i ( 无 偏 估 计 ) E [ μ M L E ] = 1 N ∑ i = 1 N E [ x i ] = 1 N ∑ i = 1 N μ = 1 N N   μ = μ \begin{array}{lcr} μ_{MLE} &=& \frac{1}{N}\sum_{i=1}^{N}x_i(无偏估计)\\ E[μ_{MLE}] &=& \frac{1}{N}\sum_{i=1}^{N}E[x_i]\\ &=& \frac{1}{N}\sum_{i=1}^{N}μ\\ &=& \frac{1}{N}N\ μ\\ &=& μ \end{array} μMLEE[μMLE]=====N1i=1Nxi()N1i=1NE[xi]N1i=1NμN1N μμ

σ M L E 2 = a r g m a x σ   P ( x ∣ σ ) = a r g m a x ∑ ( − l o g   σ   − 1 2 σ 2 ) ∂ ℘ ∂ σ = ∑ i = 1 N [ − 1 σ + 1 2 ( x i − μ ) 2 ( + 2 ) σ − 3 ] = 0 ∑ i = 1 N [ − 1 σ + ( x i − μ ) 2 σ − 3 ] = 0 − ∑ i = 1 N σ 2   +   ∑ i = 1 N ( x i − μ ) 2 = 0 ∑ i = 1 N σ 2 = ∑ i = 1 N ( x i − μ ) 2 σ M L E 2 = 1 N ∑ i = 1 N ( x i − μ ) 2 ( 有 偏 估 计 ) E [ σ M L E 2 ] = N − 1 N σ 2 σ ^ = 1 N − 1 ∑ i = 1 N ( x i − μ M L E ) ( 无 偏 估 计 ) \begin{array}{lcr} \sigma_{MLE}^{2} &=& argmax_{\sigma}\ P(x|\sigma)\\ &=& argmax\sum(-log\ \sigma\ - \frac{1}{2\sigma^2})\\\\ \frac{\partial\wp}{\partial\sigma} &=& \sum_{i=1}^{N}[- \frac{1}{\sigma}+\frac{1}{2}(x_i-μ)^2(+2)\sigma^{-3}] &=& 0 \\ \sum_{i=1}^{N}[-\frac{1}{\sigma}+(x_i-μ)^2\sigma^{-3}] &=& 0\\ -\sum_{i=1}^{N}\sigma^2 \ + \ \sum_{i=1}^{N}(x_i-μ)^2 &=& 0\\ \sum_{i=1}^{N}\sigma^2 &=& \sum_{i=1}^{N}(x_i-μ)^2\\ \sigma_{MLE}^{2} &=& \frac{1}{N}\sum_{i=1}{N}(x_i-μ)^2(有偏估计)\\\\ E[\sigma_{MLE}^{2}] &=& \frac{N-1}{N}\sigma^2 \\ \hat\sigma &=& \frac{1}{N-1}\sum_{i=1}^{N}(x_i-μ_{MLE})(无偏估计) \end{array} σMLE2σi=1N[σ1+(xiμ)2σ3]i=1Nσ2 + i=1N(xiμ)2i=1Nσ2σMLE2E[σMLE2]σ^=========argmaxσ P(xσ)argmax(log σ 2σ21)i=1N[σ1+21(xiμ)2(+2)σ3]00i=1N(xiμ)2N1i=1N(xiμ)2()NN1σ2N11i=1N(xiμMLE)()=0

在这里插入图片描述

参考资料

1.板书 高斯分布1-极大似然估计

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水花

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值