CV领域经典backbone模型小抄(1)

前言

看了那么多cv模型,我也想把一些创新点或者需要注意的地方记下来,方便自己温习。
本文会不断更新…
CV领域经典backbone模型小抄(1)

CV轻量级backbone模型小抄(1)

CV目标检测模型小抄(1)

CV语义分割模型小抄(1)
CV实例分割模型小抄(1)

多模态模型小抄(1)

卷积操作后大小计算 卷积与转置卷积——pytorch

下一篇 CV领域经典backbone模型小抄(2)



模型

timm库也实现了很多模型,可以瞅瞅 rwightman/pytorch-image-models/timm/models

前言,之前其实有LeNet(代码:LeNet_WZMIAOMIAO pytorch)和alexNet(代码:torchvision/models/alexnet.py), 不过他们没有预训练的权重,所以后续大伙其实用得少。因此这里我直接从VGG

VGG

模型结构,看着这个模型我们就能写出代码了。


加载时其实可以用torchvision.models定义的类
torchvision官方VGG模型代码: torchvision vgg

from torchvision import models
net = models.vgg16()



googleNet

官方的图, 个人觉得改图不够简化,看起来挺费劲,最好学习一下iFormer的画图方式,整体框架由小模块构成,然后具体再展示小模块的网络层,这样更容易理解(纯属个人喜好)。

值得一提的是, inception的思想最近一篇文章 iFormer(Inception Transformer)用到transformer上,超越了swin transformer.

resNet

之前自个写过一篇resnet的博客resNet模型论文与实现, 简单复现了resnet,不得不说,resnet相较于googlenet的结构,真的很简单,性能又有一定提升。

其中代码还附带了 ResNeXt 的代码。( ResNeXt是resnet一个改进版本,网络结构视频讲解可见ResNeXt网络结构), resnext论文 Aggregated Residual Transformations for Deep Neural Networks



shuffleNetV2

shuffleNet视频讲解: ShuffleNet v1 v2理论讲解_霹雳吧啦Wz

denseNet

efficentNet


RegNet

cvpr 2020 何恺明组的作品, 但是总感觉这个网络在我看的领域里用得不多(也可能是我这个菜鸡鼠目寸光…)



efficientNetV2

2021 CVPR, 相比efficientNet-v1,引入了FusedMBConv模块。

ViT

ICLR 2021

相信这篇 vision transformer的NLP同学看到源码会觉得有点亲切的感觉,出现了self-attention模块。



RepVGG

简单结构,也有好性能

Swin Transformer

模型结构:

为了快速实现移动窗口机制, 作者非常巧妙了设计了掩码机制来实现这个操作。

几个可选规格的模型架构:


这个也是基于transformer的backbone模型,亮点在于移动窗口注意力机制以及层次结构。



ConvNeXt

模型block对比图


本文主要是有很多训练策略的提出。

这篇公众号文章觉得不错 ConvNeXt:手把手教你改模型



MLP-Mixer

没有CNN的全连接构成的模型。
MLP-Mixer: An all-MLP Architecture for Vision
NIPS2021 MLP-Mixer NIPS2021
代码: https://github.com/lucidrains/mlp-mixer-pytorch



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值