CV 经典主干网络 (Backbone) 系列: SENet
作者:Jie Hu 等
发表时间:2017
Paper 原文: Squeeze-and-Excitation Networks
该篇是 CV 经典主干网络 (Backbone) 系列 下的一篇文章。
SENet 是最后一届 ImageNet 挑战赛(ILSVRC2017)的冠军。SENet 的核心是一种叫做 SE Block(Squeeze-and-Excitation) 的结构,其本质是在 channel 维度上做attention 或者 gating 操作,其创新点在于关注 channel 之间的关系,具体来说,就是通过学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要程度去提升有用的特征并抑制对当前任务用处不大的特征。此外,值得一提的是 SE Block 具有通用性,可以比较方便的拓展到其他网络结构中(如 InceptionNet,ResNet等)。
作者在文中证明,加入 SE Block 后,计算量略有增加(不到1%),但是效果会更好。
1. SE Block 结构
SE Block 主要有三步,分别是 Squeeze, Excitation 和 Reweight(Scale)。
首先是 Squeeze 操作,我们顺着空间维度来进行特征压缩,将每个二维的特征通道变成一个实数,这个实数某种程度上具有全局的感受野,并且输出的维度和输入的特征通道数相匹配。它表征着在特征通道上响应的全局分布,而且使得靠近输入的层也可以获得全局的感受野,这一点在很多任务中都是非常有用的。
其次是 Excitation 操作,它是一个类似于循环神经网络中门的机制。通过参

SENet是2017年ImageNet挑战赛的冠军模型,其核心SEBlock能够通过学习方式自动获取每个特征通道的重要程度,进而提升有用特征并抑制不重要的特征。SEBlock包括Squeeze、Excitation和Reweight三个步骤,加入SEBlock后计算量略有增加但显著提升了模型性能。
最低0.47元/天 解锁文章

2378

被折叠的 条评论
为什么被折叠?



