【知识总结系列】 - 计算机图形学基础知识
图像变换概念
这里的变换具体指什么?
“变换” 指的是对图形或物体的几何变化或坐标变换。这种变化可以改变对象的位置、形状、方向、大小或其他几何属性。在计算机图形学、计算机视觉和几何学中,“变换” 通常指的是将一个对象从一个坐标系统或空间变换到另一个坐标系统或空间的操作。
这些变换可以包括平移(移动对象的位置)、旋转(改变对象的方向)、缩放(改变对象的大小)、错切(扭曲对象的形状)、投影(将三维对象映射到二维平面)、颜色变换(改变对象的颜色属性)等等。这些变换通常用数学矩阵表示,以便进行计算和应用。
变换在图形学和计算机视觉中具有广泛的应用,用于创建动画、图像处理、对象识别、模拟相机视图、几何建模等任务。通过应用不同类型的变换,可以改变和控制对象的外观和行为,从而实现各种视觉效果和分析操作。
有那些变换?
许多其他常见的图形变换和几何变换,它们在计算机图形学、计算机视觉和图像处理中都有广泛的应用。以下是一些常见的变换类型:
仿射变换(Affine Transformation):包括平移、旋转、缩放和错切等线性变换,可以用矩阵表示。
透视变换(Perspective Transformation):用于处理三维场景的投影到二维平面,通常涉及到远近物体的大小变化。
多项式变换(Polynomial Transformation):使用多项式函数进行变换,可用于曲线拟合和图像畸变校正。
射影变换(Projective Transformation):类似于透视变换,但包括更一般的几何变换,通常涉及到四边形到四边形的映射。
非线性变换(Nonlinear Transformation):包括各种非线性函数,用于处理复杂的几何变换,如极坐标转换、极化坐标变换等。
仿射变换(Deformation Transformation):用于变形对象,可以用于创建特效、动画和图像编辑。
颜色变换(Color Transformation):用于改变图像的颜色和亮度,包括颜色空间变换、调色板变换等。
傅里叶变换(Fourier Transformation):用于将图像从空间域转换到频域,用于频域分析和滤波。深度学习常说的捕捉图像的高频特征大概就是这个意思。
小波变换(Wavelet Transformation):用于将图像分解成不同频率的小波成分,用于图像压缩和分析。
形态学变换(Morphological Transformation):用于形态学图像处理,包括腐蚀、膨胀、开运算、闭运算等。
这些变换可以根据任务的需求和具体应用来选择和组合,用于实现不同类型的图像处理、图像增强、图像识别、图像配准等任务。不同类型的变换可以在处理不同的图像特征和结构时发挥作用。
什么是仿射变换?
仿射变换(Affine Transformation)是图形学和计算机视觉领域中的一种线性变换,用于将一个二维或三维对象从一个位置、大小、方向映射到另一个位置、大小、方向,同时保持了原始对象的平行线性质和直线性质。
仿射变换是一种非常基础且重要的几何变换,它可以表示为一个矩阵乘法,通常用于以下操作:
平移(Translation):将对象沿着给定的方向和距离移动。
旋转(Rotation):围绕一个中心点旋转对象。
缩放(Scaling):增加或减小对象的大小。
错切(Shearing):在一个方向上拉伸或收缩对象。
镜像(Reflection):将对象翻转,通常是关于某个轴对称翻转。
仿射变换的重要性在于它保持了原始对象的直线性质和平行线性质。这意味着在仿射变换后,原始对象上的直线仍然是直线,平行线仍然是平行线。这种性质对于许多图像处理、计算机视觉和计算机图形学任务非常有用,如图像校正、物体识别、图像配准等。
在二维情况下,仿射变换可以表示为一个3x3的矩阵,其中包括平移、旋转、缩放和错切的参数。在三维情况下,仿射变换可以表示为一个4x4的矩阵,包括平移、旋转、缩放、错切以及透视投影的参数。这些变换是计算机图形学和计算机视觉中的基础操作,用于实现图像处理和计算机生成的图像。
只进行平移和旋转和缩放的变换叫什么?
只进行平移、旋转和缩放的变换通常被称为刚体变换(Rigid Transformation)或欧几里德变换(Euclidean Transformation)。这种类型的变换保持了对象的形状和大小,同时允许对象在平面内或三维空间中进行平移、旋转和缩放。
刚体变换包括以下操作:
平移(Translation):将对象沿着给定的方向和距离移动,不改变对象的形状和大小。
旋转(Rotation):围绕一个中心点旋转对象,使得对象的方向发生改变,但不改变形状和大小。
缩放(Scaling):增加或减小对象的大小,但保持形状和相对位置不变。
这种类型的变换常常用于计算机图形学、计算机视觉和几何学中,用于处理和分析对象在平面或三维空间中的运动、位置和方向变化。刚体变换具有重要的性质,如保持点之间的距离和角度,因此在许多应用中非常有用,如物体定位、图像配准、动画和机器人运动控制等。
透视变换的步骤?
透视变换是一种将三维场景投影到二维平面上的几何变换,通常用于创建具有深度感的图像,例如在计算机图形学、计算机视觉和摄影中。以下是执行透视变换的一般步骤:
- 定义投影矩阵(Projection Matrix):
- 首先,需要定义一个投影矩阵,通常表示为 P。这个矩阵包含了摄像机的内部参数(如焦距、相机位置等)和外部参数(如相机的旋转和平移)。
- 投影矩阵的具体构建方式取决于相机模型和需求,常见的包括透视投影和正交投影。
- 确定场景的三维坐标:
- 对于需要进行透视变换的三维场景,需要确定每个对象或点在三维世界坐标系中的位置。
- 应用投影变换:
- 对于每个场景中的点或对象,将其坐标(通常是齐次坐标)与投影矩阵相乘,以获得投影后的二维坐标。
投影后的坐标通常表示为 [x, y, w],其中 x 和 y 是二维坐标,w 是齐次坐标的缩放因子。
- 执行透视除法:
- 透视除法是将投影坐标中的齐次坐标进行缩放以获得标准的二维坐标的过程。
- 透视除法通常是通过将投影坐标中的 x 和 y 除以 w 来执行的,即 x ′ = x / w x' = x / w x′=x/w 和 y ′ = y / w y' = y / w y′=y/w。
- 得到最终投影结果:
- 经过透视除法后,得到的坐标 (x’, y’) 即为投影到二维平面上的最终结果。
- 这些坐标可以用于在屏幕上绘制或渲染场景。
需要注意的是,透视变换通常用于模拟相机拍摄场景的效果,包括远近物体的大小差异和透视效果。投影矩阵的构建和透视变换的具体实现方式可能因应用和需求而异。在计算机图形学和计算机视觉中,常常使用现成的数学库和工具来执行透视变换。