深度学习基础知识

深度学习基础知识

函数的连续、可导、可微之间的关系和联系


连续和可导的关系?

在数学中,连续性和可导性是函数的两种不同特性,它们之间有以下关系:

1. 可导性通常意味着连续性:

  • 如果函数在某点可导,那么它在该点也一定连续。
  • 可导性是比连续性更强的要求。换句话说,可导性包含了连续性。

2. 连续性不一定意味着可导性:

  • 函数即使在某点连续,也不一定在该点可导。

  • 例如,绝对值函数
    f ( x ) = ∣ x ∣ , x = 0 f(x) = |x|, \quad x = 0 f(x)=x,x=0

    x = 0 x=0 x=0 处是连续的,但在这一点不可导,因为其在这一点的左侧和右侧的导数不相同。

总的来说,可导性比连续性要求更高。所有可导的函数都是连续的,但并非所有连续的函数都是可导的。在深度学习中,可导性特别重要,因为它允许使用基于梯度的优化方法,如反向传播算法。


可微和可导的区别?

在数学和机器学习领域,“可微”(Differentiable)和"可导"(Derivable)这两个术语通常被用来描述函数的特性,它们有着密切的联系但也存在一些细微的差别。

1. 可导 (Derivable):

如果函数在某一点的导数存在,那么称这个函数在该点是可导的。
导数的存在意味着可以计算函数在这一点的斜率或切线的倾斜率。

2. 可微 (Differentiable):

  • 可微通常是指函数不仅在某点可导,而且其导数是连续的。
  • 可微函数的导数不存在跳跃或不连续点。
    在实际应用中,如果一个函数在某个区间内的每一点都是可导的,并且其导数是连续的,那么这个函数就是在该区间可微的。在大多数情况下,可微也意味着可导,但可导并不总是意味着可微。例如,一个函数在某点可导,但其导数在那一点不连续,则该函数在该点是可导的,但不是可微的。

在深度学习中,可微性是非常重要的,因为它保证了梯度下降等优化算法能够被用于有效地训练模型。


连续的定义?

函数在某点连续的数学定义是,假设有一个函数 f ( x ) f(x) f(x),在点 c c c处连续的条件是:

  1. 函数在该点有定义: f ( c ) f(c) f(c) 是有定义的。
  2. 极限存在:当 x x x 趋近于 c c c 时, f ( x ) f(x) f(x) 的极限存在
  3. 函数值等于极限值:函数在该点的值等于该点的极限值,即如果这三个条件都满足,那么可以说函数 f ( x ) f(x) f(x) 在点 c c c 处是连续的。简单来说,如果你可以在不抬笔的情况下绘制函数在该点的图形,那么该函数在这一点是连续的。

可导要满足那些条件 ?

  1. 存在的定义: 函数在该点及其邻域内必须有定义。

  2. 极限存在: 函数在该点的导数定义为其导函数在该点的极限。这意味着左导数(左侧极限)和右导数(右侧极限)必须存在且相等。用数学表达式来说,如果函数 f f f 在点 x x x 可导,则这两个极限存在且相等。
    lim ⁡ h → 0 + f ( x + h ) − f ( x ) h = lim ⁡ h → 0 − f ( x + h ) − f ( x ) h \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} limh0+hf(x+h)f(x)=limh0hf(x+h)f(x)

  3. 连续性: 虽然连续性不一定意味着可导性,但可导性确实意味着在该点的连续性。换句话说,如果函数在某点可导,那么它在该点也连续。


导数的链式法则是什么?在深度学习模型中有什么作用?

导数的链式法则是一个在微积分中用来计算复合函数导数的重要规则。如果有两个函数 f f f g g g,链式法则允许我们计算这两个函数复合后的导数。 h ( x ) = f ( g ( x ) ) h(x)= f(g(x)) h(x)=f(g(x)), 那么 h h h x x x处的导数可以通过链式法则来计算:

具体来说,如果有一个函数 h ( x ) = f ( g ( x ) ) h(x)=f(g(x)) h(x)=f(g(x))

h ′ ( x ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) h'(x) = f'(g(x)) \cdot g'(x) h(x)=f(g(x))g(x)

在深度学习中,链式法则是反向传播算法的核心。反向传播算法用于计算损失函数相对于模型参数的梯度,这对于基于梯度的优化方法(如梯度下降法)至关重要。深度学习模型通常由许多复合的函数(如多层神经网络)组成,链式法则使我们能够有效地计算这些复合函数的梯度。

例如,在一个简单的两层神经网络中,输出是输入经过两个函数(通常是线性变换后跟一个非线性激活函数)的复合。使用链式法则,可以计算出损失函数相对于网络中每个参数的梯度,这些梯度随后被用于更新模型的权重和偏置,以最小化损失函数。

定义

导数的链式法则是微积分中的一个重要法则,用于求解复合函数的导数。如果有两个函数 y = g ( u ) y = g(u) y=g(u) u = f ( x ) u = f(x) u=f(x),那么这两个函数的复合 y = g ( f ( x ) ) y = g(f(x)) y=g(f(x))的导数可以通过链式法则求得。

公式

链式法则的公式表示为:
d y d x = d y d u ⋅ d u d x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} dxdy=dudydxdu

这里, d y d u \frac{dy}{du} dudy是外层函数 g ( u ) g(u) g(u)关于 u u u的导数,而 d u d x \frac{du}{dx} dxdu是内层函数 f ( x ) f(x) f(x)关于 x x x的导数。

在深度学习模型中的作用

反向传播算法

在深度学习中,链式法则被广泛应用于反向传播算法(Backpropagation)。这是一种用于训练神经网络的算法,其中通过计算损失函数(如均方误差)相对于网络参数(权重和偏置)的梯度来优化这些参数。

梯度计算

在神经网络中,每个神经元的输出是通过激活函数对加权输入和偏置的总和应用某种非线性转换得到的。当计算损失函数相对于网络参数的导数时,需要应用链式法则来反向传播这些导数(梯度),从输出层传播到输入层。

优化

通过这种方式,可以精确地计算出损失函数关于每个参数的梯度,进而使用梯度下降或其他优化算法来更新网络参数,以减少预测误差。
链式法则在深度学习中的应用是核心和基础,使得我们能够有效地训练复杂的神经网络模型。

  • 26
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值