day3 Numpy应用案例(1)

Numpy应用案例

注:使用numpy库来对图像进行处理。这里我们使用matplotlib.pyplot的相关方法来辅助。
对于彩色图像,可以认为是由RGB三个通道构成的。每个最低维就是一个通道。分别提取R(红色),G(绿色),B(蓝色)三个通道,并显示单通道的图像。

对图像的操作,其实就是对三维数组[R,G,B]中的值的修改。

1、图像读取与显示

  • plt.imread:读取图像,返回图像的数组。
  • plt.imshow:显示图像。
  • plt.imsave:保存图像。

说明:

  • imread方法默认只能处理png格式的图像,如果需要处理其他格式的图像,需要安装pillow库。
import numpy as np
import matplotlib.pyplot as plt

# 读取图像数据,返回ndarray数组。
a = plt.imread("C:/Users/hubert/Desktop/数据分析就业班(上海3万培训班)/数据分析/1.jpg")
print(type(a))
print(a.shape)
# 显示图像。(传递表示图像的ndarray数组对象)
plt.imshow(a)
# 保存图像
plt.imsave("C:/Users/hubert/Desktop/数据分析就业班(上海3万培训班)/数据分析/python.jpg", a) 

在这里插入图片描述

2、显示纯色图像

  • 显示白色图像(创建一个数组,值都是255)
  • 显示黑色图像(创建一个数组,值都是0)
  • 显示指定颜色图像(通过截图可以看到RGB像素大小)

图像可以有两种表示方式:

  1. 使用无符号的np.uint8,取值是0-255
  2. 使用float类型表示,取值是0.0-1.0。其中float类型的0.0对应整数的0,float类型的1.0对应整数类型的1.0
a = np.zeros([400,400,3])
# 显示图像。(传递表示图像的ndarray数组对象)
plt.imshow(a)

或者

a = np.full((100,100,3),0,dtype=np.uint8)
# 显示图像。(传递表示图像的ndarray数组对象)
plt.imshow(a)

在这里插入图片描述

# float类型
a = np.ones([100,100,3])
plt.imshow(a)

或者

# np.uint8类型
b = np.full((100,100,3),255,dtype=np.uint8)
plt.imshow(b)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值