深度学习笔记--修改替换Pytorch权重文件的Key值

目录

1--前言

2--问题描述

2--代码

3--测试


1--前言

        最近复现一篇 Paper,需要使用预训练的模型,但预训练模型和自定义模型的 key 值不匹配,导致无法顺利加载预训练权重文件;

2--问题描述

        需要使用的预训练模型如下:

import torch

if __name__ == "__main__":
 
    weights_files = './joint_model_stgcn.pt' # 权重文件路径
    weights = torch.load(weights_files) # 加载权重文件
    
    for k, v in weights.items(): # key, value
        print(k)  # 打印 key(参数名)

        原权重文件的 key 值如下:

A
...
st_gcn_networks.9.gcn.conv.weight
st_gcn_networks.9.gcn.conv.bias
st_gcn_networks.9.tcn.0.weight
st_gcn_networks.9.tcn.0.bias
st_gcn_networks.9.tcn.0.running_mean
st_gcn_networks.9.tcn.0.running_var
st_gcn_networks.9.tcn.0.num_batches_tracked
st_gcn_networks.9.tcn.2.weight
st_gcn_networks.9.tcn.2.bias
st_gcn_networks.9.tcn.3.weight
st_gcn_networks.9.tcn.3.bias
st_gcn_networks.9.tcn.3.running_mean
st_gcn_networks.9.tcn.3.running_var
st_gcn_networks.9.tcn.3.num_batches_tracked
edge_importance.0
edge_importance.1
edge_importance.2
edge_importance.3
edge_importance.4
edge_importance.5
edge_importance.6
edge_importance.7
edge_importance.8
edge_importance.9

fcn.weight
fcn.bias

        需求是修改以下 key 值,以适配自定义模型:

edge_importance.0 -> edge_importance0
edge_importance.1 -> edge_importance1
edge_importance.2 -> edge_importance2
edge_importance.3 -> edge_importance3
edge_importance.4 -> edge_importance4
edge_importance.5 -> edge_importance5
edge_importance.6 -> edge_importance6
edge_importance.7 -> edge_importance7
edge_importance.8 -> edge_importance8
edge_importance.9 -> edge_importance9

2--代码

        基于原权重文件,利用 collections.OrderedDict() 创建新的权重文件:

import torch
import collections

if __name__ == "__main__":
    # 加载原权重文件
    weights_files = './joint_model_stgcn.pt'
    weights = torch.load(weights_files)
    # 修改
    new_d = weights
    for i in range(10):
        new_d = collections.OrderedDict([('edge_importance'+str(i), v) if k == 'edge_importance.'+str(i) else (k, v) for k, v in new_d.items()])
    # 测试
    for k, v in new_d.items(): # key, value
        print(k)  # 打印参数名
    # 保存
    torch.save(new_d, 'new_joint_model_stgcn.pt')

        修改后的 key 值:

A
...
st_gcn_networks.9.gcn.conv.weight
st_gcn_networks.9.gcn.conv.bias
st_gcn_networks.9.tcn.0.weight
st_gcn_networks.9.tcn.0.bias
st_gcn_networks.9.tcn.0.running_mean
st_gcn_networks.9.tcn.0.running_var
st_gcn_networks.9.tcn.0.num_batches_tracked
st_gcn_networks.9.tcn.2.weight
st_gcn_networks.9.tcn.2.bias
st_gcn_networks.9.tcn.3.weight
st_gcn_networks.9.tcn.3.bias
st_gcn_networks.9.tcn.3.running_mean
st_gcn_networks.9.tcn.3.running_var
st_gcn_networks.9.tcn.3.num_batches_tracked
edge_importance0
edge_importance1
edge_importance2
edge_importance3
edge_importance4
edge_importance5
edge_importance6
edge_importance7
edge_importance8
edge_importance9

fcn.weight
fcn.bias

3--测试

        测试原权重文件和新权重文件的 value 是否相同:

import torch

if __name__ == "__main__":
 
    origin_weights_files = './joint_model_stgcn.pt'
    origin_weights = torch.load(origin_weights_files)
    new_weights_files = './new_joint_model_stgcn.pt'
    new_weights = torch.load(new_weights_files)

    print(origin_weights['A'] == new_weights['A'])
    print(origin_weights['edge_importance.0'] == new_weights['edge_importance0'])

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: cvae-gan-zoos-pytorch-beginner这个词汇代表一个初学者使用PyTorch框架进行CVAE-GAN(生成式对抗网络变分自编码器)的编码器,这个网络可以在数据集中进行分析学习,并将数据转换为可以生成新数据的潜在向量空间。该网络不需要通过监督学习标签分类,而是直接使用数据的分布。这个编码器的目的是从潜在空间中生成新数据。此模型可以用于不同的任务,例如图像生成和语音生成。 为了实现这一目标,这一模型采用了CVAE-GAN网络结构,其中CVAE(条件变分自编码器)被用来建立机器学习模型的潜在空间,GAN(生成式对抗网络)作为一个反馈网络,以实现生成数据的目的。最后,这个模型需要使用PyTorch框架进行编程实现,并对数据集进行分析和处理,以便输入到模型中进行训练。这个编码器是一个比较复杂的模型,因此,初学者需要掌握深度学习知识和PyTorch框架的相关知识,并有一定的编程经验,才能实现这一任务。 总的来说,CVAE-GAN是一个在生成数据方面取得了重大成就的深度学习模型,可以应用于各种领域,例如图像、语音和自然语言处理等。然而,对于初学者来说,这是一个相对复杂的任务,需要掌握相关知识和技能,才能成功实现这一模型。 ### 回答2: cvae-gan-zoos-pytorch-beginner是一些机器学习领域的技术工具,使用深度学习方法来实现动物园场景的生成。这些技术包括:生成式对抗网络(GAN)、变分自编码器(CVAE)和pytorch。GAN是一种基于对抗机制的深度学习网络,它可以训练出生成逼真的场景图像;CVAE也是一种深度学习网络,它可以从潜在空间中提取出高质量的场景特征,并生成与原图像相似的图像;pytorch是一个深度学习框架,它可以支持这些技术的开发和实现。 在这个动物园场景生成的过程中,通过GAN和CVAE的组合使用可以从多个角度来创建逼真而多样化的动物园场景。此外,pytorch提供了很多工具和函数来简化代码编写和管理数据,使得训练过程更加容易和高效。对于初学者们来说,这些技术和框架提供了一个良好的起点,可以探索深度学习和图像处理领域的基础理论和实践方法,有助于了解如何使用技术来生成更好的图像结果。 ### 回答3: CVaE-GAN-ZOOS-PyTorch-Beginner是一种结合了条件变分自编码器(CVaE)、生成对抗网络(GAN)和零样本学习(Zero-Shot Learning)的深度学习框架。它使用PyTorch深度学习库,适合初学者学习和使用。 CVaE-GAN-ZOOS-PyTorch-Beginner的主要目的是提供一个通用的模型结构,以实现Zero-Shot Learning任务。在这种任务中,模型要从未见过的类别中推断标签。CVaE-GAN-ZOOS-PyTorch-Beginner框架旨在使模型能够从已知类别中学习无监督的表示,并从中推断未知类别的标签。 CVaE-GAN-ZOOS-PyTorch-Beginner的结构由两个关键部分组成:生成器和判别器。生成器使用条件变分自编码器生成潜在特征,并进一步生成样本。判别器使用生成的样本和真实样本区分它们是否相似。这样,生成器被迫学习产生真实的样本,而判别器则被迫学习区分真实的样本和虚假的样本。 总的来说,CVaE-GAN-ZOOS-PyTorch-Beginner框架是一个强大的工具,可以用于解决Zero-Shot Learning问题。它是一个易于使用的框架,适合初学者学习和使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值