学习问题
已知观测序列O,估计模型λ的参数,使得在该模型下观测序列概率P(O|λ)最大。
解决算法
最大似然估计(有监督)
有监督意味着已知在给定的训练集中观测序列O={o1,o2,…,oT}和隐状态序列I={i1,i2,…,iT}
求模型λ=(A,B,π)的参数,也就是转移矩阵,发射矩阵,初始概率矩阵。
算法流程如下:
- 转移概率aij的估计
设样本中时刻 t 处于状态 i 时刻 t+1 转移到状态j的次数为 Aij,从状态转移到状态的概率aij的估计是:

其中,分母表示从状态 i 转移到任意状态的次数。
- 观测概率bj(k)的估计:
设样本中状态为 j 并观测为 k 的频数是Bjk,那么状态为j观测为k的概率bj(k)的估计是:
