隐马尔可夫模型(四)学习问题

本文详细介绍了隐马尔可夫模型(HMM)的学习问题,包括有监督的最大似然估计算法及无监督的Baum-Welch算法(EM算法的一种应用)。在最大似然估计中,讨论了如何估计转移矩阵、发射矩阵和初始概率矩阵。随后,文章深入探讨了Baum-Welch算法的原理和求解流程,用于在只有观测序列的情况下估计模型参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习问题

已知观测序列O,估计模型λ的参数,使得在该模型下观测序列概率P(O|λ)最大。

解决算法

最大似然估计(有监督)

有监督意味着已知在给定的训练集中观测序列O={o1,o2,…,oT}和隐状态序列I={i1,i2,…,iT}

求模型λ=(A,B,π)的参数,也就是转移矩阵,发射矩阵,初始概率矩阵。

算法流程如下:

  1. 转移概率aij的估计
    设样本中时刻 t 处于状态 i 时刻 t+1 转移到状态j的次数为 Aij,从状态转移到状态的概率aij的估计是:

其中,分母表示从状态 i 转移到任意状态的次数。

  1. 观测概率bj(k)的估计:
    设样本中状态为 j 并观测为 k 的频数是Bjk,那么状态为j观测为k的概率bj(k)的估计是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值