拉普拉斯平滑(Laplacian smoothing)

概念

零概率问题:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是0。这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该事件的概率为0)。

拉普拉斯平滑(Laplacian smoothing) 是为了解决零概率的问题。

法国数学家 拉普拉斯 最早提出用 加1 的方法,估计没有出现过的现象的概率。
理论假设:假定训练样本很大时,每个分量x的计数加1造成的估计概率变化可以忽略不计,但可以方便有效的避免零概率问题


具体公式

总结:分子加一,分母加K,K代表类别数目。


应用场景举例

假设在文本分类中,有3个类:C1、C2、C3。
在指定的训练样本中,某个词语K1,在各个类中观测计数分别为0,990,10。
则对应K1的概率为0,0.99,0.01。

显然C1类中概率为0,不符合实际。

于是对这三个量使用拉普拉斯平滑的计算方法如下:
  1/1003 = 0.001,991/1003=0.988,11/1003=0.011
  
在实际的使用中也经常使用加 λ(0≤λ≤1)来代替简单加1。如果对N个计数都加上λ,这时分母也要记得加上N*λ


参考文献

  • https://blog.csdn.net/qq_25073545/article/details/78621019
拉普拉斯平滑Laplacian Smoothing),也称为平滑因子加权,是一种在概率图模型(如朴素贝叶斯分类器)中常用的技术,用于处理数据稀疏的情况,即某些特征在训练集中很少出现。它的目的是通过赋予所有项一个小的非零概率,避免因观测次数太少而导致的概率估计过低。 以下是Python中使用`scikit-learn`库实现朴素贝叶斯分类器(`MultinomialNB`)并应用拉普拉斯平滑的一个简单示例: ```python from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline # 加载数据集 data = fetch_20newsgroups(shuffle=True, random_state=42) # 定义拉普拉斯平滑参数 (一般设置为1) alpha = 1.0 # 构建Pipeline,包含向量化和朴素贝叶斯分类 model = Pipeline([ ('vectorizer', CountVectorizer()), ('classifier', MultinomialNB(alpha=alpha, fit_prior=False)) # `fit_prior=False`是为了使用平滑 ]) # 训练模型 model.fit(data.data, data.target) # 使用模型预测 predictions = model.predict(data.data) # 打印结果 print(predictions[:5]) ``` 在这个例子中,`alpha` 参数就是拉普拉斯平滑的因素。如果`fit_prior=True`,默认会使用先验频率作为每个类别下特征的初始概率;而`fit_prior=False`则意味着使用拉普拉斯平滑后的概率(每个类别的概率加上平滑值`alpha`除以总类别数)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值