测度论与概率论笔记6:符号测度

符号测度

符号测度的定义

符号测度对应的是不定积分的概念,如果 f f f是测度空间 ( X , F , μ ) (X,\mathscr{F},\mu) (X,F,μ)上的一个积分存在的可测函数(几乎处处可测的函数),那么,令 ϕ ( A ) = ∫ A f d μ \phi(A)=\int_Afd\mu ϕ(A)=Afdμ ϕ \phi ϕ就是一个 f f f的不定积分,并且,由积分的性质, ϕ \phi ϕ还满足可列可加性,同时还满足 ϕ ( ∅ ) = 0 \phi(\emptyset)=0 ϕ()=0,这和测度的定义只差一个非负性,我们把这类集函数称为广义测度或符号测度,本文及后面的章节统一称为符号测度。

定义6.1(符号测度) ( X , F ) (X,\mathscr{F}) (X,F)是一个可测空间, ϕ \phi ϕ F \mathscr{F} F上的集函数,如果 ϕ \phi ϕ满足可列可加性以及 ϕ ( ∅ ) = 0 \phi(\emptyset)=0 ϕ()=0,称 ϕ \phi ϕ ( X , F ) (X,\mathscr{F}) (X,F)上的一个符号测度,如果 ∣ ϕ ( X ) ∣ < + ∞ |\phi(X)|<+\infty ϕ(X)<+,称 ϕ \phi ϕ是一个有限符号测度,如果存在 { X n } ⊂ F \{X_n\}\subset \mathscr{F} {Xn}F ∣ ϕ ( X n ) ∣ < + ∞ , n = 1 , 2 , ⋯ |\phi(X_n)|<+\infty,n=1,2,\cdots ϕ(Xn)<+,n=1,2, X = ⋃ n = 1 ∞ X n \displaystyle X=\bigcup_{n=1}^\infty X_n X=n=1Xn,称 ϕ \phi ϕ是一个 σ \sigma σ有限符号测度

符号测度的性质
  1. ϕ \phi ϕ是符号测度,则要么 ∀ A ∈ F , ϕ ( A ) < + ∞ \forall A\in\mathscr{F},\phi(A)<+\infty AF,ϕ(A)<+要么 ∀ A ∈ F , ϕ ( A ) > − ∞ \forall A\in\mathscr{F}, \phi(A)>-\infty AF,ϕ(A)>
    对一个符号测度 ϕ \phi ϕ,不可能同时存在两个可测集 A , B A,B A,B ϕ ( A ) = + ∞ , ϕ ( B ) = − ∞ \phi(A)=+\infty,\phi(B)=-\infty ϕ(A)=+,ϕ(B)=。这样,符号测度的取值范围要么是 ( − ∞ , + ∞ ] (-\infty,+\infty] (,+],要么是 [ − ∞ , + ∞ ) [-\infty,+\infty) [,+),不可能是 [ − ∞ , + ∞ ] [-\infty,+\infty] [,+]。如果一个符号测度 φ \varphi φ的取值范围是 [ − ∞ , + ∞ ) [-\infty,+\infty) [,+),那么只需要令 ϕ = − φ \phi = -\varphi ϕ=φ ϕ \phi ϕ依然是一个符号测度,并且取值范围是 ( − ∞ , + ∞ ] (-\infty,+\infty] (,+]
    因此,我们后面统一规定,符号测度的取值范围是 ( − ∞ , + ∞ ] (-\infty,+\infty] (,+],也就是说, ϕ ( A ) < + ∞ \phi(A)<+\infty ϕ(A)<+ ∣ ϕ ( A ) ∣ < + ∞ |\phi(A)|<+\infty ϕ(A)<+是等价的。

证:
用反证法进行证明,假设存在 A ∈ F , B ∈ F A\in\mathscr{F},B\in\mathscr{F} AF,BF ϕ ( A ) = + ∞ , ϕ ( B ) = − ∞ \phi(A)=+\infty,\phi(B)=-\infty ϕ(A)=+,ϕ(B)=,则有 ϕ ( A ∪ B ) = ϕ ( A ) + ϕ ( B − A ) ϕ ( A ∪ B ) = ϕ ( B ) + ϕ ( A − B ) \phi(A\cup B) = \phi(A) +\phi(B-A)\\ \phi(A\cup B) = \phi(B) + \phi(A-B) ϕ(AB)=ϕ(A)+ϕ(BA)ϕ(AB)=ϕ(B)+ϕ(AB)为了使得上面的等式有意义, ϕ ( B − A ) > − ∞ \phi(B-A)>-\infty ϕ(BA)>,于是,由上面的等式,就可以得到 ϕ ( A ∪ B ) = + ∞ \phi(A\cup B)=+\infty ϕ(AB)=+,同理,由下面的等式可以得到 ϕ ( A ∪ B ) = − ∞ \phi(A\cup B)=-\infty ϕ(AB)=,矛盾,这一矛盾就说明了不可能同时存在两个集合,一个集合的符号测度是 + ∞ +\infty +,另一个集合的符号测度是 − ∞ -\infty

  1. A , B A,B A,B都是可测集, A ⊂ B A\subset B AB ϕ ( B ) < + ∞ \phi(B)<+\infty ϕ(B)<+,则 ϕ ( A ) < + ∞ \phi(A)<+\infty ϕ(A)<+
    在上一小节对有限符号测度的定义中,我们只规定了 ϕ ( X ) < + ∞ \phi(X)<+\infty ϕ(X)<+,但实际上,由性质2,这蕴含了: ∀ A ∈ F , ϕ ( A ) < + ∞ \forall A\in \mathscr{F},\phi(A)<+\infty AF,ϕ(A)<+

证: ϕ ( B ) = ϕ ( A ) + ϕ ( B − A ) \phi(B) = \phi(A) + \phi(B-A) ϕ(B)=ϕ(A)+ϕ(BA)如果 ϕ ( A ) = + ∞ \phi(A)=+\infty ϕ(A)=+,为了使得上面的等式有意义,则必须要有 ϕ ( B ) = + ∞ \phi(B)=+\infty ϕ(B)=+,这与 ϕ ( B ) < + ∞ \phi(B)<+\infty ϕ(B)<+是矛盾的,因此, ϕ ( A ) < + ∞ \phi(A)<+\infty ϕ(A)<+

  1. { A n } \{A_n\} {An}是两两不交的可测集,并且满足 ϕ ( ⋃ n = 1 ∞ A n ) < + ∞ \phi(\bigcup_{n=1}^\infty A_n)<+\infty ϕ(n=1An)<+ ∑ n = 1 ∞ ∣ ϕ ( A n ) ∣ < + ∞ \displaystyle \sum_{n=1}^\infty|\phi(A_n)|<+\infty n=1ϕ(An)<+

证:
由于 { A n } \{A_n\} {An}是两两不交的可测集,将这个可测集列分成两部分 ϕ ( ⋃ n = 1 ∞ A n ) = ∑ k = 1 ∞ ϕ ( A n k ) + ∑ k = 1 ∞ ϕ ( A m k ) \phi(\bigcup_{n=1}^\infty A_n)=\sum_{k=1}^\infty{\phi(A_{n_k})}+\sum_{k=1}^\infty\phi(A_{m_k}) ϕ(n=1An)=k=1ϕ(Ank)+k=1ϕ(Amk)其中 { A n k } \{A_{n_k}\} {Ank} { A n } \{A_n\} {An}中所有非负测度的集合,而 { A m k } \{A_{m_k}\} {Amk}是所有负测度集合,为了使得以上等式有意义,必须有 ∑ k = 1 ∞ ϕ ( A n k ) < + ∞ − ∞ < ∑ k = 1 ∞ ϕ ( A m k ) < + ∞ \sum_{k=1}^\infty{\phi(A_{n_k})}<+\infty\\ -\infty<\sum_{k=1}^\infty\phi(A_{m_k})<+\infty k=1ϕ(Ank)<+<k=1ϕ(Amk)<+于是 ∑ n = 1 ∞ ∣ ϕ ( A n ) ∣ = ∑ k = 1 ∞ ϕ ( A n k ) − ∑ k = 1 ∞ ϕ ( A m k ) < + ∞ \sum_{n=1}^\infty|\phi(A_n)|=\sum_{k=1}^\infty{\phi(A_{n_k})}-\sum_{k=1}^\infty\phi(A_{m_k})<+\infty n=1ϕ(An)=k=1ϕ(Ank)k=1ϕ(Amk)<+

Hahn分解与Jordan分解

Hahn分解和Jordan分解的概念

我们还是以不定积分作为例子,引入Hahn分解和Jordan分解的概念。如果 f f f是积分存在的可测函数(几乎处处可测的函数),设 ∫ X f − d μ < + ∞ \displaystyle\int_X f^-d\mu<+\infty Xfdμ<+,那么, ϕ ( A ) = ∫ A f d μ \displaystyle \phi(A) = \int_A fd\mu ϕ(A)=Afdμ是一个符号测度。那么,我们可以对 ϕ \phi ϕ进行两种意义的分解:

  1. 集合的分解: 令 X + = { f ≥ 0 } , X − = { f < 0 } X^+ = \{f\geq0\},X^-=\{f<0\} X+={f0},X={f<0},就有 ∀ A ∈ F , ϕ ( A ∩ X + ) = ∫ A ∩ X + f d μ ≥ 0 ϕ ( A ∩ X − ) = ∫ A ∩ X − f d μ ≤ 0 \forall A\in \mathscr{F},\phi(A\cap X^+)=\int_{A\cap X^+} fd\mu\geq 0\\ \phi(A\cap X^-)=\int_{A\cap X^-}fd\mu\leq 0 AF,ϕ(AX+)=AX+fdμ0ϕ(AX)=AXfdμ0
  2. 符号测度的分解:我们令 φ ( A ) = ϕ ( A ∩ X + ) , ψ ( A ) = − ϕ ( A ∩ X − ) , ∀ A ∈ F \varphi(A)=\phi(A\cap X^+),\psi(A) = -\phi(A\cap X^-),\forall A\in\mathscr{F} φ(A)=ϕ(AX+),ψ(A)=ϕ(AX),AF φ \varphi φ是一个测度, ψ \psi ψ是一个有限测度, ϕ = φ − ψ \phi=\varphi-\psi ϕ=φψ,于是 ϕ \phi ϕ就可以分解成两个符号测度之差。从积分角度看, φ ( A ) = ∫ A f + d μ , ψ ( A ) = ∫ A f − d μ \varphi(A) = \int_A f^+d\mu,\psi(A)=\int_Af^-d\mu φ(A)=Af+dμ,ψ(A)=Afdμ以上分解式实际上就是积分的定义。

实际上,对于一般的符号测度,也存在这样的分解。集合的分解我们称为Hahn分解,而符号测度的分解我们称为Jordan分解。

Hahn分解

Hahn分解的定理

我们先给出Hahn分解的定理,然后再给出Hahn分解的证明。

定理6.1(Hahn分解) ϕ \phi ϕ ( X , F ) (X,\mathscr{F}) (X,F)上的符号测度,则可将 X X X分解为 X = X + ∪ X − , X + ∈ F , X − ∈ F , X + ∩ X − = ∅ X=X^+\cup X^-,X^+\in \mathscr{F},X^-\in\mathscr{F},X^+\cap X^-=\emptyset X=X+X,X+F,XF,X+X=,并且 ϕ ( A ∩ X + ) ≥ 0 , ϕ ( A ∩ X − ) ≤ 0 , ∀ A ∈ F \phi(A\cap X^+)\geq 0,\phi(A\cap X^-)\leq 0,\forall A\in \mathscr{F} ϕ(AX+)0,ϕ(AX)0,AF以上集合的分解称为Hahn分解,并且在以下意义下唯一:如果 ϕ \phi ϕ存在另一组Hahn分解 X = X 0 + ∪ X 0 − X=X_0^+\cup X_0^- X=X0+X0,则 ϕ ( X + Δ X 0 + ) = 0 , ϕ ( X − Δ X 0 − ) = 0 \phi(X^+\Delta X_0^+)=0,\phi(X^-\Delta X_0^-)=0 ϕ(X+ΔX0+)=0,ϕ(XΔX0)=0

Hahn分解的证明

为了证明Hahn分解的存在性,我们要定义一个类似于"内测度"的集函数:
ϕ ∗ ( A ) = sup ⁡ { ϕ ( B ) : B ⊂ A , ϕ ( B ) ≥ 0 } \phi^*(A)=\sup\{\phi(B):B\subset A,\phi(B)\geq 0\} ϕ(A)=sup{ϕ(B):BA,ϕ(B)0}容易证明, ϕ ∗ \phi^* ϕ具有以下三个性质:

  1. ϕ ∗ \phi^* ϕ非负
  2. ϕ ∗ \phi^* ϕ单调,即: A ⊂ B , A ∈ F , B ∈ F A\subset B,A\in\mathscr{F},B\in\mathscr{F} AB,AF,BF ϕ ∗ ( A ) ≤ ϕ ∗ ( B ) \phi^*(A)\le \phi^*(B) ϕ(A)ϕ(B)
  3. ϕ ∗ ( ∅ ) = 0 \phi^*(\emptyset)=0 ϕ()=0

引理6.1 A ∈ F , ϕ ( A ) < + ∞ A\in\mathscr{F},\phi(A)<+\infty AF,ϕ(A)<+,则 ∀ ε > 0 , ∃ A ε ∈ F \forall \varepsilon>0,\exists A_\varepsilon\in\mathscr{F} ε>0,AεF,使得 A ε ⊂ A , ϕ ( A ε ) ≥ 0 , ϕ ∗ ( A − A ε ) ≤ ε A_\varepsilon\subset A,\phi(A_\varepsilon)\ge 0,\phi^*(A-A_\varepsilon)\le \varepsilon AεA,ϕ(Aε)0,ϕ(AAε)ε

证:用反证法证明,如果 ∃ ε 0 > 0 , ∀ B ⊂ A , B ∈ F , \exists \varepsilon_0>0,\forall B\subset A,B\in\mathscr{F}, ε0>0,BA,BF,要么 ϕ ( B ) < 0 , \phi(B)<0, ϕ(B)<0,要么 ϕ ∗ ( A − B ) > ε 0 \phi^*(A-B)>\varepsilon_0 ϕ(AB)>ε0
ϕ ∗ ( A ) ≥ ε 0 \phi^*(A)\ge \varepsilon_0 ϕ(A)ε0,取 A 1 ⊂ A , A 1 ∈ F , ϕ ( A 1 ) > ε 0 A_1\subset A,A_1\in\mathscr{F},\phi(A_1)>\varepsilon_0 A1A,A1F,ϕ(A1)>ε0,则 ϕ ∗ ( A − A 1 ) > ε 0 \phi^*(A-A_1)>\varepsilon_0 ϕ(AA1)>ε0
又可以取 A 2 ⊂ A − A 1 , A 2 ∈ F , ϕ ( A 2 ) > ε 0 , A_2\subset A-A_1,A_2\in\mathscr{F},\phi(A_2)>\varepsilon_0, A2AA1,A2F,ϕ(A2)>ε0, ϕ ∗ ( A − A 1 − A 2 ) > ε 0 \phi^*(A-A_1-A_2)>\varepsilon_0 ϕ(AA1A2)>ε0
又可以取 A 3 ⊂ A − A 1 − A 2 , A 3 ∈ F , ϕ ( A 3 ) > ε 0 , A_3\subset A-A_1-A_2,A_3\in\mathscr{F},\phi(A_3)>\varepsilon_0, A3AA1A2,A3F,ϕ(A3)>ε0, ϕ ∗ ( A − A 1 − A 2 − A 3 ) > ε 0 \phi^*(A-A_1-A_2-A_3)>\varepsilon_0 ϕ(AA1A2A3)>ε0
以此类推,重复上面的过程,可以得到 { A n } ⊂ F \{A_n\}\subset \mathscr{F} {An}F,两两不交, ϕ ( A n ) > ε 0 , A n ⊂ A , n = 1 , 2 , ⋯ \phi(A_n)>\varepsilon_0,A_n\subset A,n=1,2,\cdots ϕ(An)>ε0,AnA,n=1,2,,则 ϕ ( ⋃ n = 1 ∞ A n ) = + ∞ \phi(\bigcup_{n=1}^\infty A_n)=+\infty ϕ(n=1An)=+这与 ϕ ( A ) < + ∞ \phi(A)<+\infty ϕ(A)<+矛盾(符号测度的性质2)

引理6.2 ∀ A ∈ F , \forall A\in\mathscr{F}, AF,只要 ϕ ( A ) < 0 \phi(A)<0 ϕ(A)<0,则 ∃ A 0 ∈ F \exists A_0\in\mathscr{F} A0F A 0 ⊂ A , ϕ ( A 0 ) < 0 , ϕ ∗ ( A 0 ) = 0 A_0\subset A,\phi(A_0)<0,\phi^*(A_0)=0 A0A,ϕ(A0)<0,ϕ(A0)=0

证:如果 ϕ ∗ ( A ) = 0 \phi^*(A)=0 ϕ(A)=0,直接得证,否则,按照以下步骤取出一个可测集列 { A n } \{A_n\} {An}
第1步:取可测集 A 1 ⊂ A A_1\subset A A1A ϕ ( A 1 ) > 0 , ϕ ∗ ( A − A 1 ) < 1 \phi(A_1)>0,\phi^*(A-A_1)<1 ϕ(A1)>0,ϕ(AA1)<1
第2步:取可测集 A 2 ⊂ A − A 1 A_2\subset A-A_1 A2AA1 ϕ ( A 2 ) > 0 , ϕ ∗ ( A − A 1 − A 2 ) < 1 2 \phi(A_2)>0,\phi^*(A-A_1-A_2)<\frac{1}{2} ϕ(A2)>0,ϕ(AA1A2)<21
第3步:取可测集 A 3 ⊂ A − A 1 − A 2 A_3\subset A-A_1-A_2 A3AA1A2 ϕ ( A 3 ) > 0 , ϕ ∗ ( A − A 1 − A 2 − A 3 ) < 1 3 \phi(A_3)>0,\phi^*(A-A_1-A_2-A_3)<\frac{1}{3} ϕ(A3)>0,ϕ(AA1A2A3)<31(反复使用引理6.1)
以此类推,则由 ϕ ∗ \phi^* ϕ的单调性 ϕ ∗ ( A − ⋃ n = 1 ∞ A n ) ≤ ϕ ∗ ( A − ⋃ k = 1 n A k ) ≤ 1 n \phi^*(A-\bigcup_{n=1}^\infty A_n)\le \phi^*(A-\bigcup_{k=1}^n A_k)\le \frac{1}{n} ϕ(An=1An)ϕ(Ak=1nAk)n1因此 ϕ ∗ ( A − ⋃ n = 1 ∞ A n ) = 0 \phi^*(A-\bigcup_{n=1}^\infty A_n)=0 ϕ(An=1An)=0同时 ϕ ( A ) = ∑ n = 1 ∞ ϕ ( A n ) + ϕ ( A − ⋃ n = 1 ∞ A n ) \phi(A) = \sum_{n=1}^\infty \phi(A_n) + \phi(A-\bigcup_{n=1}^\infty A_n) ϕ(A)=n=1ϕ(An)+ϕ(An=1An) ϕ ( A ) < 0 , ∑ n = 1 ∞ ϕ ( A n ) > 0 , \displaystyle\phi(A)<0,\sum_{n=1}^\infty \phi(A_n)>0, ϕ(A)<0,n=1ϕ(An)>0, ϕ ( A − ⋃ n = 1 ∞ A n ) < 0 \displaystyle\phi(A-\bigcup_{n=1}^\infty A_n)<0 ϕ(An=1An)<0

Hahn分解的证明:
①Hahn分解的存在性:
S = { A ∈ F : ϕ ∗ ( A ) = 0 } S=\{A\in\mathscr{F}:\phi^*(A)=0\} S={AF:ϕ(A)=0},不难证明 S S S是一个 σ \sigma σ环,并且 α = inf ⁡ A ∈ S ϕ ( A ) > − ∞ \alpha = \inf_{A\in S} \phi(A) >-\infty α=ASinfϕ(A)>可取可测集列 { A n } ⊂ S \{A_n\}\subset S {An}S ϕ ( A n ) → α \phi(A_n)\to \alpha ϕ(An)α,令 X − = ⋃ n = 1 n A n , X + = X − X − \displaystyle X^-=\bigcup_{n=1}^n A_n,X^+ = X-X^- X=n=1nAn,X+=XX,则对任何 A ⊂ X + A\subset X^+ AX+,必须有 ϕ ( A ) ≥ 0 \phi(A)\ge 0 ϕ(A)0,否则,由引理6.2,存在可测集 B ⊂ A , ϕ ( B ) < 0 , ϕ ∗ ( B ) = 0 B\subset A,\phi(B)<0,\phi^*(B)=0 BA,ϕ(B)<0,ϕ(B)=0 B ∪ X − ∈ S , ϕ ( B ∪ X − ) = ϕ ( B ) + ϕ ( X − ) < ϕ ( B ) = α B\cup X^- \in S,\phi(B\cup X^-)=\phi(B)+\phi(X^-)<\phi(B)=\alpha BXS,ϕ(BX)=ϕ(B)+ϕ(X)<ϕ(B)=α,与 α \alpha α的定义矛盾,同时由 ϕ ∗ \phi^* ϕ的定义, ∀ A ∈ F , A ⊂ X − , ϕ ( A ) ≤ 0 \forall A\in\mathscr{F},A\subset X^-,\phi(A)\le 0 AF,AX,ϕ(A)0,这就证明了Hahn分解的存在性。
②Hahn分解的唯一性:
假设存在两种不同的Hahn分解:: X = X + ∪ X − = X 0 + ∪ X 0 − X=X^+\cup X^-=X_0^+\cup X_0^- X=X+X=X0+X0,则 ϕ ( X + Δ X 0 + ) = ϕ ( X + ∩ X 0 − ) + ϕ ( X − ∩ X 0 + ) = 0 ϕ ( X − Δ X 0 − ) = ϕ ( X − ∩ X 0 + ) + ϕ ( X + ∩ X 0 − ) = 0 \phi(X^+\Delta X_0^+) = \phi(X^+ \cap X_0^-) + \phi(X^- \cap X_0^+)=0\\ \phi(X^-\Delta X_0^-) = \phi(X^- \cap X_0^+) + \phi(X^+ \cap X_0^-)=0 ϕ(X+ΔX0+)=ϕ(X+X0)+ϕ(XX0+)=0ϕ(XΔX0)=ϕ(XX0+)+ϕ(X+X0)=0这就证得了唯一性。

Jordan分解

假设 ϕ \phi ϕ的Hahn分解为 X = X + ∪ X − X=X^+\cup X^- X=X+X,令 φ ( A ) = ϕ ( A ∩ X + ) ψ ( A ) = − ϕ ( A ∩ X − ) ( ∀ A ∈ F ) \varphi(A)=\phi(A\cap X^+)\\ \psi(A)=-\phi(A\cap X^-) (\forall A\in\mathscr{F}) φ(A)=ϕ(AX+)ψ(A)=ϕ(AX)(AF) φ , ψ \varphi,\psi φ,ψ F \mathscr{F} F上的两个测度, ψ ( A ) \psi(A) ψ(A)为有限测度, ϕ = φ − ψ \phi=\varphi-\psi ϕ=φψ。有趣的是:对任意的 A ∈ F A\in\mathscr{F} AF,对任意的 B ∈ F , B ⊂ A , ϕ ( B ) ≥ 0 B\in\mathscr{F},B\subset A,\phi(B)\ge 0 BF,BA,ϕ(B)0,就有 ϕ ( B ) = ϕ ( B ∩ X + ) + ϕ ( B ∩ X − ) ≤ ϕ ( B ∩ X + ) ≤ ϕ ( A ∩ X + ) = φ ( A ) \phi(B)=\phi(B\cap X^+)+\phi(B\cap X^-)\le \phi(B\cap X^+)\le \phi(A\cap X^+)=\varphi(A) ϕ(B)=ϕ(BX+)+ϕ(BX)ϕ(BX+)ϕ(AX+)=φ(A)于是,我们不难看出: φ ( A ) = ϕ ∗ ( A ) \varphi(A)=\phi^*(A) φ(A)=ϕ(A),从而 ϕ ∗ \phi^* ϕ还是 F \mathscr{F} F上的一个测度!而单独看 ϕ ∗ \phi^* ϕ的定义很难看出这点。另外, φ ( A ) = ϕ ∗ ( A ) \varphi(A)=\phi^*(A) φ(A)=ϕ(A)还预示着Jordan分解的唯一性。

定理6.2(Jordan分解) 对任意的符号测度 ϕ \phi ϕ ϕ ∗ , ϕ ∗ − ϕ \phi^*,\phi^*-\phi ϕ,ϕϕ F \mathscr{F} F上的测度,分解式 ϕ = ϕ + − ϕ − \phi = \phi^+ - \phi^- ϕ=ϕ+ϕ称为 ϕ \phi ϕ的Jordan分解,其中, ϕ + = ϕ ∗ \phi^+=\phi^* ϕ+=ϕ ϕ − = ϕ ∗ − ϕ \phi^- = \phi^*-\phi ϕ=ϕϕ

由此,我们定义符号测度 ϕ \phi ϕ的上变差为 ϕ + \phi^+ ϕ+,下变差为 ϕ − \phi^- ϕ ∣ ϕ ∣ = ϕ + + ϕ − |\phi|=\phi^++\phi^- ϕ=ϕ++ϕ称为 ϕ \phi ϕ的全变差

Radon-Nikodym定理

Lebesgue分解

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值