数据科学
枠成
这个作者很懒,什么都没留下…
展开
-
建模笔记——插值
个人自学使用,观众自行参考Reference:Python数学实验与建模,司守奎,2020https://blog.csdn.net/pipisorry/article/details/62227459Python 实现牛顿插值算法插值插值,个人理解为:构造连续函数且完全经过一组已知离散数据点(xi,yi),然后求未知数据点的函数值。拟合、插值、逼近的区别拟合:是已知点列,整体上靠近他们插值:已知点列并完全经过点列逼近:已知去先,或者点列,通过逼近无限靠近他们所以最小二乘意义下.原创 2020-09-06 20:31:54 · 348 阅读 · 0 评论 -
建模笔记——熵值法&熵权法(python)
熵值法&熵权法-python实现时隔老久,重新整理一下笔记。仅供个人自学使用,读者自行参考Reference:存了不知道多久的本地文件司守奎,python数学实验与建模,2020https://www.zhihu.com/question/357680646/answer/943628631https://www.jianshu.com/p/638cb1eaec43https://blog.csdn.net/mycafe_/article/details/79285762?biz_i原创 2020-08-15 11:41:51 · 45813 阅读 · 24 评论 -
Python-wordcloud 笔记整理
权当个人自学使用,仅供参考Reference:某自己学校老师编的python程序设计基础https://www.cnblogs.com/randysun/p/11215095.html基本入门import wordcloudw = wordcloud.WordCloud()#载入字符串w.generate("Python and WordCloud")#输出为png图片w.to_file("pywordcloud.png")参数列表from wordcloud import原创 2020-08-05 18:27:45 · 220 阅读 · 0 评论 -
Python-jieba 基本使用-笔记整理
个人笔记整理,仅供自学使用Reference:https://github.com/fxsjy/jieba特点支持四种分词模式:精确模式,试图将句子最精确地切开,适合文本分析;全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。paddle模式,利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装p.原创 2020-08-05 18:05:44 · 750 阅读 · 0 评论 -
数据分析笔记——A/B测试
看过很多,博客和知乎答主的回答,很多都恍惚唯独引用笔记有用,特别是第一条链接Reference:什么是 A/B 测试? - 宁静之雨的回答 - 知乎https://www.jianshu.com/p/35b3b1d05132但凡学过中学的简单控制变量法,都不难理解A/B测试的原理。无非就是对两个样本做对照,得出差异部分的正负影响。这个问题的重点,是如何应用的实际工作中。如果是线下产品,你的代价是要制造出两份商品来让客户消费,最后评估结果;如果是在线发布的产品,你的代价是均匀剥离样本和分开.原创 2020-07-31 21:56:09 · 449 阅读 · 0 评论 -
数据分析笔记——指标构建
先放需求文档模板仅供个人自学使用,欢迎各位水友评论交流Reference:http://www.itongji.cn/detail?type=99992530https://www.jianshu.com/p/a8fba3d70b2chttps://www.jianshu.com/p/454611b470a5指标定义——两种方法一、从业务领域的需求自上而下的分析。二、从已有的业务系统中自下而上的分析定义指标:指标找到了,需要详细的定义指标的各项属性。主要分为业务属性和技术属性。业原创 2020-07-30 23:30:03 · 1140 阅读 · 0 评论 -
数据分析笔记——报告撰写
三部分个人自学使用,详情参考参考文献Reference:https://www.zhihu.com/question/39373532http://www.woshipm.com/data-analysis/739067.htmlhttp://www.itongji.cn/detail?type=99992518展示结果验证分析质量提供参考决策3A3R关于数据分析落地应用举例报告重点提醒正确写作姿势我说你听型报告:明确受众部门明确受众部门关键KPI指标了解指标过原创 2020-07-30 22:32:43 · 161 阅读 · 0 评论 -
Python-seaborn 笔记整理
Python-seaborn 笔记整理仅供个人自学使用,仅供参考Reference:https://vitu.ai/course/65599248200156992https://www.jianshu.com/p/94931255aedehttps://baijiahao.baidu.com/s?id=1650565251991078037&wfr=spider&for=pchttps://www.cnblogs.com/abdm-989/p/12204640.html原创 2020-07-19 14:27:42 · 862 阅读 · 0 评论 -
Python-matplotlib 笔记整理
Python-matplotlib 笔记整理仅供个人自学使用,自行参考Reference:司守奎,孙玺青,Python数学实验与建模,科学出版社,2020https://www.jianshu.com/p/da385a35f68dhttps://www.runoob.com/numpy/numpy-matplotlib.html导包import numpy as np from matplotlib import pyplot as plt Figure:面板(图),matplotl原创 2020-07-19 10:44:51 · 378 阅读 · 0 评论 -
Python-scipy 笔记整理
笔记整理,供自行学习使用Reference:https://vitu.ai/courses/lesson/65600627429901184/65598890065315648https://zhidao.baidu.com/question/309834209.htmlhttps://www.cnblogs.com/hirokuh/p/9335200.html某速查表导包import numpy as npimport scipy.stats as statsimport scipy.转载 2020-07-16 12:16:13 · 791 阅读 · 0 评论 -
Python-numpy 笔记整理
只记录自己不熟的Referece:https://vitu.ai/course/65598890065315648某速查表https://www.cnblogs.com/rrttp/p/8028421.htmlhttps://www.jianshu.com/p/cbd0db72058e构造多维数组(矩阵)import numpy as npa = np.arange(20)a = a.reshape(4, 5)print(a)a = a.reshape(2, 2, 5)print.原创 2020-07-15 13:30:54 · 278 阅读 · 0 评论 -
建模笔记——一些统计参数的解释
建模笔记——一些统计参数的解释以后零零散散的解释以后都会放这种文里本期参考文献,随手百度没保存,就算了哈哈哈哈R-squared 和 Adjusted R-squared联系与区别R-squared(值范围0-1):描述的输入变量对输出变量的解释程度。在单变量线性回归中R-squared 越大,说明拟合程度越好。然而只要增加了更多的变量,无论增加的变量是否和输出变量存在关系,则R-squared 要么保持不变,要么增加。So, 需要adjusted R-squared ,它会对那些增加的且不原创 2020-07-13 22:03:30 · 1403 阅读 · 0 评论 -
SPSS——线性回归
SPSS-线性回归笔记总结。本文只有SPSS结果分析,推导等有空再搞参考文献:https://blog.csdn.net/qysh123/article/details/73801391https://www.mediecogroup.com/method_article_detail/45/https://www.mediecogroup.com/method_article_detail/51/线性回归的假设前提线性回归分析,需要先满足以下8项假设:假设1:因变量是连续变量。假设2原创 2020-07-13 16:32:44 · 4711 阅读 · 0 评论 -
建模笔记——标准化和归一化
标准化和归一化的区别建模校赛选拔的时候,队友没太搞得清楚标准化和归一化,索性直接百度,一看有大坑。这里先放参考文献:标准化和归一化什么区别? - 知乎 https://www.zhihu.com/question/20467170数据标准化/归一化normalization -csdn https://blog.csdn.net/pipisorry/article/details/52247379"标准化"和"归一化"这两个中文词要指代四种Feature scaling(特征缩放)方法1、Re原创 2020-07-13 16:10:36 · 936 阅读 · 0 评论