建模笔记——一些统计参数的解释

本文介绍了在建模中R-squared和Adjusted R-squared的区别,强调在单变量线性回归中使用R-squared,多变量时则使用Adjusted R-squared以避免无关变量的影响。同时,文章还探讨了S.E of regression(回归的标准误差)和对数似然函数在最大似然估计法中的作用。
摘要由CSDN通过智能技术生成

建模笔记——一些统计参数的解释

以后零零散散的解释以后都会放这种文里
本期参考文献,随手百度没保存,就算了哈哈哈哈

R-squared 和 Adjusted R-squared联系与区别

R-squared(值范围0-1):描述的输入变量对输出变量的解释程度。在单变量线性回归中R-squared 越大,说明拟合程度越好。
然而只要增加了更多的变量,无论增加的变量是否和输出变量存在关系,则R-squared 要么保持不变,要么增加。
So, 需要adjusted R-squared ,它会对那些增加的且不会改善模型效果的变量增加一个惩罚向。

结论:如果单变量线性回归,则使用 R-squared评估,多变量,则使用adjusted R-squared。

在单变量线性回归中,R-squared和adjusted R-squared是一致的。
另外,如果增加更多无意义的变量,则R-squared 和adjusted R-squared之间的差距会越来越大,Adjusted R-squared会下降。但是如果加入的特征值是显著的,则adjusted R-squared也会上升

S.E of regression

回归系数的标准误差就是它的标准差,统计量的标准差一般叫做标准误差,回归系数的估计其实就是均值估计哦。回归的标准误应该是模型中随机扰动项(误差项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值