建模笔记——一些统计参数的解释
以后零零散散的解释以后都会放这种文里
本期参考文献,随手百度没保存,就算了哈哈哈哈
R-squared 和 Adjusted R-squared联系与区别
R-squared(值范围0-1):描述的输入变量对输出变量的解释程度。在单变量线性回归中R-squared 越大,说明拟合程度越好。
然而只要增加了更多的变量,无论增加的变量是否和输出变量存在关系,则R-squared 要么保持不变,要么增加。
So, 需要adjusted R-squared ,它会对那些增加的且不会改善模型效果的变量增加一个惩罚向。
结论:如果单变量线性回归,则使用 R-squared评估,多变量,则使用adjusted R-squared。
在单变量线性回归中,R-squared和adjusted R-squared是一致的。
另外,如果增加更多无意义的变量,则R-squared 和adjusted R-squared之间的差距会越来越大,Adjusted R-squared会下降。但是如果加入的特征值是显著的,则adjusted R-squared也会上升
S.E of regression
回归系数的标准误差就是它的标准差,统计量的标准差一般叫做标准误差,回归系数的估计其实就是均值估计哦。回归的标准误应该是模型中随机扰动项(误差项