运筹学——线性规划

本文介绍了线性规划的概念,包括目标函数、约束变量、决策变量和步骤,并重点讲解了单纯形法及其在人力资源分配、生产计划等问题中的应用。通过Python的scipy.optimize.lingprog函数展示了线性规划的求解过程,同时提到了灵敏度分析的重要性。
摘要由CSDN通过智能技术生成

仅供自学使用,各位观众自行参考
Reference:
中国大学mooc 管理运筹学 韩伯棠
https://wenku.baidu.com/view/2e7891961a37f111f1855b46.html#
https://zhuanlan.zhihu.com/p/104697552

在老韩版本的管理运筹学中,手算主要分图解法单纯形法,不懂左转上边引用的链接跳转看课学习,这里不再赘述过多,因为学起来真的很头铁。

老韩教材版本的管理运筹学软件,要找找才知道有没有

线性规划步骤:

  1. 目标函数
  2. 约束变量
  3. 决策变量
  4. 一顿操作猛如虎

标题部分概念:

  • 松弛量:在线性规划中,一个“<=”约束条件中没使用的资源或能力称为松弛量
  • 对偶价格:像这样在约束条件中常数项中增加一个单位而使最优目标函数值得到改进的数量称之为这个约束条件的对偶价格。
  • 模型饿标准化:把所有约束条件携程等式
  • 剩余变量:对于“>=”约束条件,可以增加一些代表最低限约束的超过量,称之为剩余变量

主要应用:

  • 人力资源分配
  • 生产计划安排
  • 套裁下料问题
  • 配料问题
  • 投资问题

单纯性法

在这里插入图片描述

实在啃得有点难受,主要思想还是线代初等行变换变来变去然后得出最优解的过程。
其中检查是否最优的步骤,又称最优性检验,寻找可行基作基变换,剩下的左转老韩。

求目标函数值最小的线性规划问题

一、大M法

  • 人工变量:只能取0值,最后计算不是0就不等价
  • 罚因子-M:任意小的负数

二、两阶段法

  1. 判断原线性规划问题是否有基本可行解
  2. 求人工变量的相反数之和的最大值,也即求人工变量之和的最小值
解的最终结果情况

无可行解:最优解里有人工变量大于0
无界解:存在大于0的检验数,且该列的值都小于或等于0
无穷多最优解:某个最优基本可行解,存在某个非基变量检验数为0
退化问题:基变量有时存在两个以上相同地最小比值,这样在下一次迭代中就有一个或几个基本变量等于0,称为退化

单纯形法的灵敏度分析

请左转Reference的老韩,up太

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值