统计学习方法第十章——隐马尔可夫模型

10.2 概率计算算法
10.2.1 直接计算法

P ( I ∣ λ ) = P ( i 1 , i 2 , … , i T ∣ λ ) = P ( i T ∣ i 1 , i 2 , … , i T − 1 , λ ) P ( i 1 , i 2 , … , i T − 1 ∣ λ ) P(I \mid \lambda)=P\left(i_{1}, i_{2}, \ldots, i_{T} \mid \lambda\right)=P\left(i_{T} \mid i_{1}, i_{2}, \ldots, i_{T-1}, \lambda\right) P\left(i_{1}, i_{2}, \ldots, i_{T-1} \mid \lambda\right) P(Iλ)=P(i1,i2,,iTλ)=P(iTi1,i2,,iT1,λ)P(i1,i2,,iT1λ)

根据齐次一阶马尔可夫假设: P ( i T ∣ i 1 , i 2 , … , i T − 1 , λ ) = P ( i T ∣ i T − 1 , λ ) = a i T − 1 , i T P\left(i_{T} \mid i_{1}, i_{2}, \ldots, i_{T-1}, \lambda\right)=P\left(i_{T} \mid i_{T-1}, \lambda\right)=a_{i_{T-1}, i_{T}} P(iTi1,i2,,iT1,λ)=P(iTiT1,λ)=aiT1,iT所以
P ( I ∣ λ ) = a i T − 1 , i T P ( i 1 , i 2 , ⋯   , i T − 1 ∣ λ ) = a i T − 1 , i T a i T − 2 , i T − 1 P ( i 1 , i 2 , ⋯   , i T − 2 ∣ λ ) = π i 1 ∏ t = 2 T a i t − 1 , i t \begin{aligned} P(I|\lambda)&=a_{i_{T-1}, i_{T}}P(i_1,i_2,\cdots ,i_{T-1}|\lambda)\\ &=a_{i_{T-1}, i_{T}}a_{i_{T-2}, i_{T-1}}P(i_1,i_2,\cdots ,i_{T-2}|\lambda)\\ &={\pi}_{i_1}\prod_{t=2}^Ta_{i_{t-1},i_t} \end{aligned} P(Iλ)=aiT1,iTP(i1,i2,,iT1λ)=aiT1,iTaiT2,iT1P(i1,i2,,iT2λ)=πi1t=2Tait1,it
又因为:

P ( O ∣ I , λ ) = P ( o 1 , o 2 , … , o T ∣ i 1 , i 2 , … , i T , λ ) = P ( o T ∣ o 1 , o 2 , … o T − 1 , i 1 , i 2 , … , i T , λ ) P ( o 1 , o 2 , … o T − 1 ∣ i 1 , i 2 , … i T , λ ) P(O \mid I, \lambda)=P\left(o_{1}, o_{2}, \ldots, o_{T} \mid i_{1}, i_{2}, \ldots, i_{T}, \lambda\right)=P\left(o_{T} \mid o_{1}, o_{2}, \ldots o_{T-1}, i_{1}, i_{2}, \ldots, i_{T}, \lambda\right) P\left(o_{1}, o_{2}, \ldots o_{T-1} \mid i_{1}, i_{2}, \ldots i_T, \lambda \right) P(OI,λ)=P(o1,o2,,oTi1,i2,,iT,λ)=P(oTo1,o2,oT1,i1,i2,,iT,λ)P(o1,o2,oT1i1,i2,iT,λ)

根据观察独立性假设
P ( O ∣ I , λ ) = P ( o T ∣ i T ) P ( o 1 , o 2 , ⋯   , o T − 1 ∣ i 1 , i 2 , ⋯   , i T , λ ) = b i 1 ( o 1 ) P ( o 1 , o 2 , ⋯   , o T − 1 ∣ i 1 , i 2 , ⋯   , i T , λ ) = b i 1 ( o 1 ) b i 2 ( o 2 ) P ( o 1 , o 2 , ⋯   , o T − 2 ∣ i 1 , i 2 , ⋯   , i T , λ ) = ∏ t = 1 T b i t ( o t ) \begin{aligned} P(O|I,\lambda)&=P(o_T|i_T)P(o_1,o_2, \cdots ,o_{T-1}|i_1,i_2,\cdots ,i_T,\lambda)\\ &=b_{i_1}(o_1)P(o_1,o_2, \cdots ,o_{T-1}|i_1,i_2,\cdots ,i_{T},\lambda)\\ &=b_{i_1}(o_1)b_{i_2}(o_2)P(o_1,o_2, \cdots ,o_{T-2}|i_1,i_2,\cdots ,i_{T},\lambda)\\ &=\prod_{t=1}^Tb_{i_t}(o_t) \end{aligned} P(OI,λ)=P(oTiT)P(o1,o2,,oT1i1,i2,,iT,λ)=bi1(o1)P(o1,o2,,oT1i1,i2,,iT,λ)=bi1(o1)bi2(o2)P(o1,o2,,oT2i1,i2,,iT,λ)=t=1Tbit(ot)
所以 O 和 I O和I OI同时出现的联合概率为:
P ( O , I ∣ λ ) = P ( O ∣ I , λ ) P ( I ∣ λ ) = π i 1 b i 1 ( o 1 ) a i 1 i 2 b i 2 ( o 2 ) ⋯ a i T − 1 i T b i T ( o T ) \begin{aligned} P(O, I \mid \lambda) &=P(O \mid I, \lambda) P(I \mid \lambda) \\ &=\pi_{i_{1}} b_{i_{1}}\left(o_{1}\right) a_{i_{1} i_{2}} b_{i_{2}}\left(o_{2}\right) \cdots a_{i_{T-1} i_{T}} b_{i_{T}}\left(o_{T}\right) \end{aligned} P(O,Iλ)=P(OI,λ)P(Iλ)=πi1bi1(o1)ai1i2bi2(o2)aiT1iTbiT(oT)
然后, 对所有可能的状态序列 I I I 求和, 得到观测序列 O O O 的概率 P ( O ∣ λ ) P(O \mid \lambda) P(Oλ), 即
P ( O ∣ λ ) = ∑ I P ( O ∣ I , λ ) P ( I ∣ λ ) = ∑ i 1 , i 2 , ⋯   , i T π i 1 b i 1 ( o 1 ) a i 1 i 2 b i 2 ( o 2 ) ⋯ a i T − 1 i T b i T ( o T ) \begin{aligned} P(O \mid \lambda) &=\sum_{I} P(O \mid I, \lambda) P(I \mid \lambda) \\ &=\sum_{i_{1}, i_{2}, \cdots, i_{T}} \pi_{i_{1}} b_{i_{1}}\left(o_{1}\right) a_{i_{1} i_{2}} b_{i_{2}}\left(o_{2}\right) \cdots a_{i_{T-1} i_{T}} b_{i_{T}}\left(o_{T}\right) \end{aligned} P(Oλ)=IP(OI,λ)P(Iλ)=i1,i2,,iTπi1bi1(o1)ai1i2bi2(o2)aiT1iTbiT(oT)

10.2.2 前向算法

首先,根据贝叶斯公式又有:
P ( A , B , C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A , B ) P ( A , B , C ∣ λ ) = P ( A ∣ λ ) P ( B ∣ A , λ ) P ( C ∣ A , B , λ ) P ( A ∣ λ ) = ∑ B P ( A , B ∣ λ ) \begin{aligned} &P(A,B,C)=P(A)P(B|A)P(C|A,B)\\ &P(A,B,C|\lambda)=P(A|\lambda)P(B|A,\lambda)P(C|A,B,\lambda)\\ &P(A|\lambda)=\sum_BP(A,B|\lambda) \end{aligned} P(A,B,C)=P(A)P(BA)P(CA,B)P(A,B,Cλ)=P(Aλ)P(BA,λ)P(CA,B,λ)P(Aλ)=BP(A,Bλ)

α t + 1 ( i ) = P ( o 1 , ⋯   , o t + 1 , i t + 1 = q i ∣ λ ) = ∑ j = 1 N P ( o 1 , … , o t + 1 , i t = q j , i t + 1 = q i ∣ λ ) = ∑ j = 1 N P ( o 1 , … , o t , i t = q j ∣ λ ) P ( i t + 1 = q i ∣ o 1 , … , o t , i t = q j , λ ) P ( o t + 1 ∣ o 1 , … , o t , i t = q j , i t + 1 = q i , λ ) = ∑ N P ( o 1 , … , o t , i t = q j ∣ λ ) P ( i t + 1 = q i ∣ i t = q j , λ ) P ( o t + 1 ∣ i t + 1 = q i , λ ) = ∑ j = 1 N α t ( j ) a j i b i ( o t + 1 ) , i = 1 , 2 , ⋯   , N \begin{aligned} \alpha_{t+1}(i) &=P(o_1,\cdots,o_{t+1},i_{t+1}=q_i|\lambda)\\ &=\sum_{j=1}^{N} P\left(o_{1}, \ldots, o_{t+1}, i_{t}=q_{j}, i_{t+1}=q_{i} \mid \lambda\right) \\ &=\sum_{j=1}^{N} P\left(o_{1}, \ldots, o_{t}, i_{t}=q_{j} \mid \lambda\right) P\left(i_{t+1}=q_{i} \mid o_{1}, \ldots, o_{t}, i_{t}=q_{j}, \lambda\right) P\left(o_{t+1} \mid o_{1}, \ldots, o_{t}, i_{t}=q_{j}, i_{t+1}=q_{i}, \lambda\right) \\ &=\sum^{N} P\left(o_{1}, \ldots, o_{t}, i_{t}=q_{j} \mid \lambda\right) P\left(i_{t+1}=q_{i} \mid i_{t}=q_{j}, \lambda\right) P\left(o_{t+1} \mid i_{t+1}=q_{i}, \lambda\right)\\ &=\sum_{j=1}^N\alpha_t(j)a_{ji}b_i(o_{t+1}),i=1,2,\cdots,N \end{aligned} αt+1(i)=P(o1,,ot+1,it+1=qiλ)=j=1NP(o1,,ot+1,it=qj,it+1=qiλ)=j=1NP(o1,,ot,it=qjλ)P(it+1=qio1,,ot,it=qj,λ)P(ot+1o1,,ot,it=qj,it+1=qi,λ)=NP(o1,,ot,it=qjλ)P(it+1=qiit=qj,λ)P(ot+1it+1=qi,λ)=j=1Nαt(j)ajibi(ot+1),i=1,2,,N

10.2.3 后向算法

β t ( i ) = P ( o t + 1 , o t + 2 , ⋯   , o T ∣ i t = q i , λ ) = ∑ j = 1 N P ( o t + 1 , o t + 2 , ⋯   , o T , i t + 1 = q j ∣ i t = q i , λ ) = ∑ j = 1 N P ( i t + 1 = q j ∣ i t = q i , λ ) P ( o t + 2 , ⋯   , o T ∣ i t + 1 = q j , i t = q i , λ ) P ( o t + 1 ∣ o t + 2 , ⋯   , o T , i t + 1 = q j , i t = q i , λ ) = ∑ j = 1 N P ( i t + 1 = q j ∣ i t = q i , λ ) P ( o t + 2 , ⋯   , o T ∣ i t + 1 = q j , λ ) P ( o t + 1 ∣ i t + 1 = q j , λ ) = ∑ j = 1 N a i j β t + 1 ( j ) b j ( o t + 1 ) = ∑ j = 1 N a i j b j ( o t + 1 ) β t + 1 ( j ) \begin{aligned} \beta_t(i)&=P(o_{t+1},o_{t+2},\cdots,o_T|i_t=q_i,\lambda)\\ &=\sum_{j=1}^NP(o_{t+1},o_{t+2},\cdots,o_T,i_{t+1}=q_j|i_t=q_i,\lambda)\\ &=\sum_{j=1}^NP(i_{t+1}=q_j|i_t=q_i,\lambda)P(o_{t+2},\cdots,o_T|i_{t+1}=q_j,i_t=q_i,\lambda)P(o_{t+1}|o_{t+2},\cdots,o_T,i_{t+1}=q_j,i_t=q_i,\lambda)\\ &=\sum_{j=1}^NP(i_{t+1}=q_j|i_t=q_i,\lambda)P(o_{t+2},\cdots,o_T|i_{t+1}=q_j,\lambda)P(o_{t+1}|i_{t+1}=q_j,\lambda)\\ &=\sum_{j=1}^Na_{ij}\beta_{t+1}(j)b_j(o_{t+1})\\ &=\sum_{j=1}^Na_{ij}b_j(o_{t+1})\beta_{t+1}(j) \end{aligned} βt(i)=P(ot+1,ot+2,,oTit=qi,λ)=j=1NP(ot+1,ot+2,,oT,it+1=qjit=qi,λ)=j=1NP(it+1=qjit=qi,λ)P(ot+2,,oTit+1=qj,it=qi,λ)P(ot+1ot+2,,oT,it+1=qj,it=qi,λ)=j=1NP(it+1=qjit=qi,λ)P(ot+2,,oTit+1=qj,λ)P(ot+1it+1=qj,λ)=j=1Naijβt+1(j)bj(ot+1)=j=1Naijbj(ot+1)βt+1(j)

合并公式:
P ( O ∣ λ ) = ∑ i = 1 N ∑ j = 1 N α t ( i ) a i j b j ( o t + 1 ) β t + 1 ( j ) = ∑ i = 1 N α t ( i ) ∑ j = 1 N a i j b j ( o t + 1 ) β t + 1 ( j ) = ∑ i = 1 N α t ( i ) β t ( i ) \begin{aligned} P(O \mid \lambda) &=\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j) \\ &=\sum_{i=1}^{N} \alpha_{t}(i) \sum_{j=1}^{N} a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j) \\ &=\sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i) \end{aligned} P(Oλ)=i=1Nj=1Nαt(i)aijbj(ot+1)βt+1(j)=i=1Nαt(i)j=1Naijbj(ot+1)βt+1(j)=i=1Nαt(i)βt(i)
又因为
α t ( i ) β t ( i ) = P ( o 1 , o 2 , … , o t , i t = q i ∣ λ ) P ( o t + 1 , … , o T ∣ i t = q i , λ ) = P ( o 1 , o 2 , … , o t , i t = q i ∣ λ ) P ( o t + 1 , … , o T ∣ o 1 , o 2 , … , o t , i t = q i , λ ) = P ( o 1 , o 2 , … , o T , i t = q i ∣ λ ) = P ( O , i t = q i ∣ λ ) \begin{aligned} \alpha_{t}(i) \beta_{t}(i) &=P\left(o_{1}, o_{2}, \ldots, o_{t}, i_{t}=q_{i} \mid \lambda\right) P\left(o_{t+1}, \ldots, o_{T} \mid i_{t}=q_{i}, \lambda\right) \\ &=P\left(o_{1}, o_{2}, \ldots, o_{t}, i_{t}=q_{i} \mid \lambda\right) P\left(o_{t+1}, \ldots, o_{T} \mid o_{1}, o_{2}, \ldots, o_{t}, i_{t}=q_{i}, \lambda\right) \\ &=P\left(o_{1}, o_{2}, \ldots, o_{T}, i_{t}=q_{i} \mid \lambda\right) \\ &=P\left(O, i_{t}=q_{i} \mid \lambda\right) \end{aligned} αt(i)βt(i)=P(o1,o2,,ot,it=qiλ)P(ot+1,,oTit=qi,λ)=P(o1,o2,,ot,it=qiλ)P(ot+1,,oTo1,o2,,ot,it=qi,λ)=P(o1,o2,,oT,it=qiλ)=P(O,it=qiλ)
所以
∑ i = 1 N α t ( i ) β t ( i ) = ∑ i = 1 N P ( O , i t = q i ∣ λ ) = P ( O ∣ λ ) \sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i)=\sum_{i=1}^NP(O,i_t=q_i|\lambda)=P(O|\lambda) i=1Nαt(i)βt(i)=i=1NP(O,it=qiλ)=P(Oλ)

10.3 学习算法

按照Q函数的定义:
Q ( λ , λ ‾ ) = E I [ l o g P ( O , I ∣ λ ) ∣ O , λ ‾ ] = ∑ I P ( I ∣ O , λ ‾ ) l o g P ( O , I ∣ λ ) = ∑ I P ( O , I ∣ λ ‾ ) P ( O ∣ λ ‾ ) l o g P ( O , I ∣ λ ) \begin{aligned} Q(\lambda,\overline{\lambda})&=E_I[logP(O,I|\lambda)|O,\overline{\lambda}]\\ &=\sum_IP(I|O,\overline{\lambda})logP(O,I|\lambda)\\ &=\sum_I\frac{P(O,I|\overline{\lambda})}{P(O|\overline{\lambda})}logP(O,I|\lambda) \end{aligned} Q(λ,λ)=EI[logP(O,Iλ)O,λ]=IP(IO,λ)logP(O,Iλ)=IP(Oλ)P(O,Iλ)logP(O,Iλ)
略去对 λ \lambda λ而言的常数因子 1 P ( O ∣ λ ‾ ) \frac{1}{P(O|\overline{\lambda})} P(Oλ)1,于是得到式子(10.33)
Q ( λ , λ ‾ ) = ∑ I P ( O , I ∣ λ ‾ ) l o g P ( O , I ∣ λ ) Q(\lambda,\overline{\lambda})=\sum_IP(O,I|\overline{\lambda})logP(O,I|\lambda) Q(λ,λ)=IP(O,Iλ)logP(O,Iλ)
式子(10.35)求偏导得结果是:
P ( O , i 1 = i ∣ λ ‾ ) π i + γ = 0 \frac{P(O,i_1=i|\overline{\lambda})}{\pi_i}+\gamma=0 πiP(O,i1=iλ)+γ=0
然后两边同时乘以 π i \pi_i πi得到书上的结果:
P ( O , i 1 = i ∣ λ ‾ ) + γ π i = 0 P(O,i_1=i|\overline{\lambda})+\gamma\pi_i=0 P(O,i1=iλ)+γπi=0
式子(10.37)按照上面的方法计算一遍:

注意到 a i j a_{ij} aij 满足约束条件 ∑ j = 1 N a i j = 1 \sum_{j=1}^{N}a_{ij}=1 j=1Naij=1, 利用拉格朗日乘子法, 写出拉格朗日函数:
∑ i = 1 N ∑ j = 1 N ∑ t = 1 T − 1 l o g a i j P ( O , i t = i , i t + 1 = j ∣ λ ‾ ) + β ( ∑ j = 1 N a i j − 1 ) \sum_{i=1}^N\sum_{j=1}^N\sum_{t=1}^{T-1}loga_{ij}P(O,i_t=i,i_{t+1}=j|\overline{\lambda})+\beta(\sum_{j=1}^Na_{ij}-1) i=1Nj=1Nt=1T1logaijP(O,it=i,it+1=jλ)+β(j=1Naij1)
对其求偏导数并令结果为0得
∑ t = 1 T − 1 1 a i j P ( O , i t = i , i t + 1 = j ∣ λ ‾ ) + β = 0 ∑ t = 1 T − 1 P ( O , i t = i , i t + 1 = j ∣ λ ‾ ) + β a i j = 0 a i j = − 1 β ∑ t = 1 T − 1 P ( O , i t = i , i t + 1 = j ∣ λ ‾ ) ∑ j = 1 N a i j = ∑ j = 1 N − 1 β ∑ t = 1 T − 1 P ( O , i t = i , i t + 1 = j ∣ λ ‾ ) β = − ∑ t = 1 T − 1 P ( O , i t = i ∣ λ ‾ ) \sum_{t=1}^{T-1}\frac{1}{a_{ij}}P(O,i_t=i,i_{t+1}=j|\overline{\lambda})+\beta=0\\ \sum_{t=1}^{T-1}P(O,i_t=i,i_{t+1}=j|\overline{\lambda})+\beta a_{ij}=0\\ a_{ij}=-\frac{1}{\beta}\sum_{t=1}^{T-1}P(O,i_t=i,i_{t+1}=j|\overline{\lambda})\\ \sum_{j=1}^Na_{ij}=\sum_{j=1}^N-\frac{1}{\beta}\sum_{t=1}^{T-1}P(O,i_t=i,i_{t+1}=j|\overline{\lambda})\\ \beta=-\sum_{t=1}^{T-1}P(O,i_t=i|\overline{\lambda}) t=1T1aij1P(O,it=i,it+1=jλ)+β=0t=1T1P(O,it=i,it+1=jλ)+βaij=0aij=β1t=1T1P(O,it=i,it+1=jλ)j=1Naij=j=1Nβ1t=1T1P(O,it=i,it+1=jλ)β=t=1T1P(O,it=iλ)
然将得到的 β \beta β代入最开始那个式子就得到(10.37)
a i j = ∑ t = 1 T − 1 P ( O , i t = i , i t + 1 = j ∣ λ ˉ ) ∑ t = 1 T − 1 P ( O , i t = i ∣ λ ˉ ) a_{i j}=\frac{\sum_{t=1}^{T-1} P\left(O, i_{t}=i, i_{t+1}=j \mid \bar{\lambda}\right)}{\sum_{t=1}^{T-1} P\left(O, i_{t}=i \mid \bar{\lambda}\right)} aij=t=1T1P(O,it=iλˉ)t=1T1P(O,it=i,it+1=jλˉ)
同样对式子(10.38)进行一样的操作,同样用拉格朗日乘子法, 约束条件是 ∑ k = 1 M b j ( k ) = 1 \sum_{k=1}^{M} b_{j}(k)=1 k=1Mbj(k)=1 。注意, 只有在 o t = v k o_{t}=v_{k} ot=vk b j ( o t ) b_{j}\left(o_{t}\right) bj(ot) b j ( k ) b_{j}(k) bj(k) 的偏导数才不为 0 , 以 I ( o t = v k ) I\left(o_{t}=v_{k}\right) I(ot=vk) 表示。求得拉格朗日函数为:
∑ j = 1 N ∑ t = 1 T l o g b j ( o t ) P ( O , i t = j ∣ λ ‾ ) + η ( ∑ k = 1 M − 1 ) = 0 \sum_{j=1}^N\sum_{t=1}^Tlogb_j(o_t)P(O,i_t=j|\overline{\lambda})+\eta(\sum_{k=1}^M-1)=0 j=1Nt=1Tlogbj(ot)P(O,it=jλ)+η(k=1M1)=0
对其求偏导数并令结果为0
∑ t = 1 T P ( O , i t = j ∣ λ ‾ ) I ( o t = v k ) b j ( o k ) + η = 0 b j ( k ) = − 1 η ∑ t = 1 T P ( O , i t = j ∣ λ ‾ ) I ( o t = v k ) η = − ∑ t = 1 T ∑ k = 1 M P ( O , i t = j ∣ λ ‾ ) I ( o t = v k ) η = − ∑ t = 1 T P ( O , i t = j ∣ λ ‾ ) \sum_{t=1}^T\frac{P(O,i_t=j|\overline{\lambda})I(o_t=v_k)}{b_j(o_k)}+\eta=0\\ b_j(k)=-\frac{1}{\eta}\sum_{t=1}^TP(O,i_t=j|\overline{\lambda})I(o_t=v_k)\\ \eta=-\sum_{t=1}^T\sum_{k=1}^MP(O,i_t=j|\overline{\lambda})I(o_t=v_k)\\ \eta=-\sum_{t=1}^TP(O,i_t=j|\overline{\lambda}) t=1Tbj(ok)P(O,it=jλ)I(ot=vk)+η=0bj(k)=η1t=1TP(O,it=jλ)I(ot=vk)η=t=1Tk=1MP(O,it=jλ)I(ot=vk)η=t=1TP(O,it=jλ)
η \eta η代回上式得式子(10.38)
b j ( k ) = ∑ t = 1 T P ( O , i t = j ∣ λ ˉ ) I ( o t = v k ) ∑ t = 1 T P ( O , i t = j ∣ λ ˉ ) b_{j}(k)=\frac{\sum_{t=1}^{T} P\left(O, i_{t}=j \mid \bar{\lambda}\right) I\left(o_{t}=v_{k}\right)}{\sum_{t=1}^{T} P\left(O, i_{t}=j \mid \bar{\lambda}\right)} bj(k)=t=1TP(O,it=jλˉ)t=1TP(O,it=jλˉ)I(ot=vk)
下面对(10.39)~(10.41)进行推导
a i j = ∑ t = 1 T − 1 P ( O , i t = i , i t + 1 = j ∣ λ ˉ ) ∑ t = 1 T − 1 P ( O , i t = i ∣ λ ˉ ) = ∑ t = 1 T − 1 P ( O , i t = i , i t + 1 = j ∣ λ ‾ ) 1 P ( O ∣ λ ‾ ) ∑ t = 1 T − 1 P ( O , i t = i ∣ λ ‾ ) 1 P ( O ∣ λ ‾ ) = ∑ t = 1 T − 1 ζ t ( i , j ) ∑ t = 1 T − 1 γ t ( i ) \begin{aligned} a_{i j}&=\frac{\sum_{t=1}^{T-1} P\left(O, i_{t}=i, i_{t+1}=j \mid \bar{\lambda}\right)}{\sum_{t=1}^{T-1} P\left(O, i_{t}=i \mid \bar{\lambda}\right)}\\ &=\frac{\sum_{t=1}^{T-1}P(O,i_t=i,i_{t+1}=j|\overline{\lambda})\frac{1}{P(O|\overline{\lambda})}}{\sum_{t=1}^{T-1}P(O,i_t=i|\overline{\lambda})\frac{1}{P(O|\overline{\lambda})}} \\&=\frac{\sum_{t=1}^{T-1}\zeta_t(i,j)}{\sum_{t=1}^{T-1}\gamma_t(i)} \end{aligned} aij=t=1T1P(O,it=iλˉ)t=1T1P(O,it=i,it+1=jλˉ)=t=1T1P(O,it=iλ)P(Oλ)1t=1T1P(O,it=i,it+1=jλ)P(Oλ)1=t=1T1γt(i)t=1T1ζt(i,j)

b j ( k ) = ∑ t = 1 T P ( O , i t = j ∣ λ ‾ ) I ( o t = v k ) ∑ t = 1 T P ( O , i t = j ∣ λ ‾ ) = ∑ t = 1 , o t = v k T P ( O , i t = j ∣ λ ‾ ) 1 P ( O ∣ λ ‾ ) ∑ t = 1 T P ( O , i t = j ∣ λ ‾ ) 1 P ( O ∣ λ ‾ ) = ∑ t = 1 , o t = v k T γ t ( j ) ∑ t = 1 T γ t ( j ) \begin{aligned} b_j(k)&=\frac{\sum_{t=1}^TP(O,i_t=j|\overline{\lambda})I(o_t=v_k)}{\sum_{t=1}^TP(O,i_t=j|\overline{\lambda})}\\ &=\frac{\sum_{t=1,o_t=v_k}^TP(O,i_t=j|\overline{\lambda})\frac{1}{P(O|\overline{\lambda})}}{\sum_{t=1}^TP(O,i_t=j|\overline{\lambda})\frac{1}{P(O|\overline{\lambda})}}\\ &=\frac{\sum_{t=1,o_t=v_k}^T\gamma_t(j)}{\sum_{t=1}^T\gamma_t(j)} \end{aligned} bj(k)=t=1TP(O,it=jλ)t=1TP(O,it=jλ)I(ot=vk)=t=1TP(O,it=jλ)P(Oλ)1t=1,ot=vkTP(O,it=jλ)P(Oλ)1=t=1Tγt(j)t=1,ot=vkTγt(j)

π i = P ( O , i 1 = i ∣ λ ‾ ) P ( O ∣ λ ‾ ) = γ 1 ( i ) \pi_i=\frac{P(O,i_1=i|\overline{\lambda})}{P(O|\overline{\lambda})}=\gamma_1(i) πi=P(Oλ)P(O,i1=iλ)=γ1(i)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值