MMDetection中的常用操作及其命令

MMDetection中的操作

1. 训练

python tools/train.py [configs_file] --gpus 1 --work_dir work_dirs

2. 测试

(1)Output pkl file

​ This command will output “results_name.pkl” file.

python tools/test.py [configs_file] [pth] --out results_name.pkl --eval bbox
python tools/test.py configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth --out=work_dirs/result.pkl --eval bbox
(2) Output json result file

​ This command will output “results.bbox.json” file.

python tools/test.py [configs_file] [pth] --eval-options "jsonfile_prefix=results_name" --eval bbox
python tools/test.py configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth --eval bbox --eval-options "jsonfile_prefix=results"

3. 输出coco metric

python tools/analysis_tools/eval_metric.py [configs_file] [pkl_file] --eval bbox
python tools/analysis_tools/eval_metric.py configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py work_dirs/faster_rcnn_coco_result.pkl --eval bbox

请添加图片描述


4. 绘制PR曲线

python plot_pr_curve.py

请添加图片描述


5. Log Analysis

python tools/analysis_tools/analyze_logs.py plot_curve work_dirs/20211018_114826.log.json --keys loss_cls loss_bbox --out work_dirs/losses.pdf

6. Result Analysis(报错,页面太小)

python tools/analysis_tools/analyze_results.py work_dirs/faster_rcnn_r50_fpn_1x_coco.py work_dirs/faster_rcnn_coco_result.pkl work_dirs/show_dir

7. Visualize Datasets(显示images和GTs)

python tools/misc/browse_dataset.py configs/_base_/datasets/coco_detection.py --output-dir work_dirs/show_dataset_dir
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值