1、数据编码
首先介绍一下该神经元模型论文里面提到的编码方式:群体编码(population encoding)
编码步骤:
1、计算发放强度(就是指发放的欲望有多大)
其中第h个接受域的μh和是中心和标准偏差,计算公式如下所示:
然后根据所计算得到的发放强度去计算发放时间:
def spiking_genersate(train_data):
mu=par.mu #中心
sigma=par.sigma #偏离
RF=par.RF #接收域神经元总数 6
feature=par.feature #特征,就是指输入维度的意思,所以这里他是4维的
spike_time=np.zeros((int(train_data.shape[0]),par.feature*par.RF)) #训练样本数*24
for num in range(train_data.shape[0]):
fire_value=np.zeros(RF) #是否发放?
fire_strength=np.zeros((feature,RF)) #发放强度,不同维度对应
for t in range(par.feature):
for i in range(par.RF):
fire_value[i]=np.exp(-np.power((train_data[num,t]-mu[i]),2)/(2*np.power(sigma,2))) #这是计算发放强度 (1,6)
fire_strength[t,:]=fire_value #(4,6)
spike_time[num,:]=(np.round(par.T_pre*(1-fire_strength))+1).reshape((1,par.feature*par.RF)) #np.round()一般情况下是四舍五入取整,0的时候直接向下取整,ceil()和floor()函数是向下取整
pyplot.plot(spike_time.T,'.k')
return spike_time
源代码里面的输入:其中包括四个特征值和一个分类结果。
得到的发放强度(4,6)的矩阵
2、训练
编码完之后开始初始化权重矩阵和阈值矩阵。
1、创建权重矩阵和阈值矩阵大小,权重矩阵(24,301,3)中间的为时间。阈值矩阵大小为(1,3)
2、接下来是根据第一个第一个样本的数据给权重矩阵赋初值。
def weights_thershold_reload(train_data,train_label,weights,theta,fire_time): #初始化阈值
Output_size=0
for i in range(train_data.shape[0]):
temp = int(train_label[i]-1)
if (theta[int(train_label[i]-1)]==0): #用模式1的训练数据来初始化权重和θ
Output_size = Output_size + 1
weights[:, :, int(train_label[i]-1)] = np.multiply((gaussian_function(par.T_train, fire_time[i,:].transpose())).transpose(), do_uki((par.TID- fire_time[i,:]))[:, np.newaxis]) #timing-vary weigts,weight initial
theta[int(train_label[i]-1)] = (np.matmul(do_uki((par.TID- fire_time[i,:]))[np.newaxis, :], LIF_e(par.TID - fire_time[i,:].transpose())[:, np.newaxis])).squeeze() #theta initial
if (Output_size == par.class_num):
break
return weights,theta
接下来就是训练了,这里的神经元是LIF,算法是STDP的监督版本。
既然是监督学习,那就肯定有根据结果去改变权重的部分。接下来就介绍它是怎么改变权重的。
其中包括了计算突触后神经元发放时间,如下图所示。
接下来是利用STDP监督学习算法计算更新,先上理论:
1、计算归一化STDP
这是原始的STDP
计算完所有发放点的STDP后,对STDP进行归一化
然后计算文中说的是理想的发放时间
接下来是误差损失函数:
有了误差损失函数就可以计算delta_w
第一个值为学习率,
时变函数为:
最后更新权重:
源码下载地址:
https://download.csdn.net/download/weixin_43872912/85172793