【知识蒸馏简介】

本文介绍了知识蒸馏和领域泛化的概念及其在迁移学习中的应用。知识蒸馏通过将大型教师网络的软标签传递给小型学生网络,实现模型压缩。领域泛化则致力于将不同领域的特征映射到统一空间。两种技术都涉及损失函数的计算,包括学生网络的蒸馏损失和学生损失。最终目标是提高模型在新领域数据上的泛化能力。
摘要由CSDN通过智能技术生成

        知识蒸馏与领域泛化都可以用在迁移学习上,领域泛化主要是对不同领域数据的特征映射到同一空间,知识蒸馏是将一个训练好的大的模型压缩成小的模型。已经训练好的大的模型叫做教师网络,知识蒸馏是将教师网络压缩成学生网络。

        将教师网络的输出按式(1.4)进行计算,输出的soft label作为学生网络的label,学生网络的输出也按式(1.4)进行输出为soft prediction。学生网络的loss是蒸馏损失和学生损失的加权和,蒸馏损失是学生网络的输出soft prediction和教师网络的输出soft label的loss,学生损失是学生网络的hard prediction和数据的hard label的loss。

 参考:

  1. Knowledge Distillation - Neural Network Distiller

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值