【领域泛化论文阅读】Momentum Contrast for Unsupervised Visual Representation Learning

        论文指出之前的工作是通过去除source domain的image style或者多样化 style,这解决了style的过拟合,但忽略了content的过拟合。这篇论文是通过wild来多样化source domain的content和style,以达到域泛化的目标。

        Baseline model通过segmentation loss式(1)来训练,只是普通的语义分割损失函数。

        Feature Stylization是为了多样化source style,通过添加多层的AdaIN层将wild style传递给source feature,如式(2)所示

        Content Extension Learning是为了防止对source content的过拟合,将源域的content扩展到wild,来增强intra-class的变化,达到一个好的泛化性。

        论文采用了对比学习,将content扩展到wild-stylized,损失函数是式(3),将zis和zisw作为正样本对,迫使它们靠近,而zsw中其他的与zis的类别不同的ziswzs的负样本,尽量远离。

        下一步是将content扩展到wild,因为wild数据集是没有y的,所以式(3)不能直接用,因此论文将zsw存储在字典Q中,先通过式(7)找到最相似的zisw来代替ziw,得到loss式(8)。最后将两个损失函数加一起得到CEL的loss式(10)。

        Style Extension Learning是为了防止对source style的过拟合,虽然FS已经多样化了style,但是得到的wild-stylized的语义分割结果很差,所以SEL是通过损失函数式(11)让网络能适应wild-stylized。

       Semantic Consistency Regularization是为了使ps和psw一致,学习一致的语义信息,损失函数是KL散度式(12)

参考文献

  1. Lee S, Seong H, Lee S, et al. WildNet: Learning Domain Generalized Semantic Segmentation from the Wild[J]. arXiv preprint arXiv:2204.01446, 2022.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值