【点云系列】PointAugment: an Auto-Augmentation Framework for Point Cloud Classification

PointAugment是一种自动增强框架,专注于3D点云分类。它通过对抗学习策略优化增强器和分类器,为每个样本回归特定的增强函数,包括形状变换和点位移。实验表明,这种方法能有效提升点云分类的性能。
摘要由CSDN通过智能技术生成

1 简介

题目:PointAugment: an Auto-Augmentation Framework for Point Cloud Classification
论文:https://arxiv.org/pdf/2002.10876.pdf
代码:https://github.com/liruihui/PointAugment/

2 Motivation

传统的增强策略是在很小范围内随机扰动,缩放和旋转输入。类似的方法对于2D数据有效,但对3D还不够。其中,形状变换和点位移决定了3D中的物体,因此主要是对形状变换和位移来做学习。

  • Sample-aware。考虑到每个样本的几何结构,为每个样本回归其特定增强函数。而非通用增强策略
  • 2D vs 3D 增强。 与2D增强不同,3D增强涉及更广泛的空间域。对于3D点云自然数据,考虑2种转换方式:
    1)形状转换,包括 旋转、尺度变换和结合;
    2)点位移,包括抖动
  • 联合优化。增强器&分类器一起考虑促进优化。

3 思想

通过样本,采用对抗学习策略,共同优化增强器网络分类器网络的工作。以便增强器可以学习产生并筛选出最适合分类器的样本。
在这里插入图片描述

4 算法

在这里插入图片描述

4.1 增强器

  1. 增强器获得样本的点云;
  2. 计算每点特征;
  3. 使用以下方法应用特定于样本的增强回归:
    1)按形状进行回归以产生变换,得到3x3的线性矩阵,给出剪切、缩放、旋转;
    2)逐点回归以产生每个点的位移;
  4. 样本于线性矩阵相乘,并加上位移。

4.2 增强器损失

最大化网络学习,则增强器生成的样本需要满足两点规则:
规则1. P ′ P' P要比 P P P更具挑战性,即 L ( P ′ ) ≥ L ( P ) L(P')\ge L(P) L(P)L(P);
规则2. P ′ P' P不能失去其形状可区分性,即与 P P P不能相差太悬殊。
对于要求1,最小化交叉熵损失即可,即增强器损失如下:
在这里插入图片描述
其中L§交叉熵如下:
在这里插入图片描述
y ^ c ∈ { 0 , 1 } \hat{y}_c\in \{0,1\} y^c

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值