提出了一种基于图卷积神经网络提取点特征的点云分类网络。
输入N*3的点云,通过切比雪夫多项式的图卷积,先升成N*1000,也就是把每个节点的信息增加到1000维,然后针对global-pooling,再做一次卷积,把两次卷积得到的2个N*1000维的张量,按列取最大和按列算方差(对称函数),则消除了点序的影响,然后两个2*1000的最大向量concat,两个2*1000的方差向量concat,得到2000*2的点云总体特征,然后通过全连接进行分类。
提出了一种基于图卷积神经网络提取点特征的点云分类网络。
输入N*3的点云,通过切比雪夫多项式的图卷积,先升成N*1000,也就是把每个节点的信息增加到1000维,然后针对global-pooling,再做一次卷积,把两次卷积得到的2个N*1000维的张量,按列取最大和按列算方差(对称函数),则消除了点序的影响,然后两个2*1000的最大向量concat,两个2*1000的方差向量concat,得到2000*2的点云总体特征,然后通过全连接进行分类。