来源:CVPR2017
一句话概括:提出膨胀3D卷积(I3D)用于提取视频时空维度特征并进行动作识别; 构建Kinetics人类动作视频数据集
动作识别框架
视频模型框架分为两类:2D和3D。2D模型需要考虑信息如何在不同帧之间传播,这一过程可以通过时间维度的循环网络如LSTM或特征聚合来实现。本文比较了比较了几类视频模型框架,并提出了双流膨胀3D卷积模型。
2D模型可以用到基于图片的预训练模型(如ImageNet)而不用从头训练,3D模型则不方便实现,需要从头训练。
双流膨胀3D卷积
在这一结构下,3D卷积可以用到ImageNet 2D卷积的设计和预训练好的参数。此外,尽管3D卷积可以获取时间维度特征,但加上光流分支仍然可以提高表现(表明I3D对时间维度信息的提取不完全,后续还提出了多种方法)。
**将2D卷积膨胀为3D:**将2D的filter拓展成三维并池化卷积核,即额外增加一个时间维,filter从N X N变为N X N X N,基于短时间内的视频帧相似性原理。
**从2Dfilter自举3Dfilter:**一张图片可以通过简单重复变成一个视频(作者称为“无聊的”视频)。3D模型可以通过这样的方式隐式地在ImageNet上预训练,只需要满足条件:在:“无聊”视频上池化后的输出与原始的单张图片上的输出相同。实现方法: