一种创新性有效重力模型的复杂网络中关键节点的识别【论文阅读】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


摘要

复杂网络是具有小世界、聚类和幂律分布特征的网络。关键扩展器(重要节点)的发现作为复杂网络的重要研究方向之一,主要用于识别在网络结构和功能中起关键作用的节点。重力模型是识别影响者的一种特殊方法,但是这种方法涉及一个开放的问题,即如何确定交互的范围(例如节点质量和影响力计算)。此外,在传统方法中,质量仅以节点的度数来表示。为了解决上述问题,本文提出了一种基于精确半径和数值信息的有效重力模型。精确计算出截断半径,并将代表节点传播能力的价值信息修改为大众。(简而言之,节点的影响范围和价值得分是根据每个节点的属性和网络中邻居节点的交互来计算的)。与其他类似方法和最先进的措施相比,本文方法的合理性和优越性通过对11个真实世界网络的6个实验进行了证明。

一、识别有影响力节点的经典方法模型

首先回顾在复杂网络中识别重要传播者的一些基本方法。

1.1 度中心性

节点的重要性取决于邻居的数量。给定一个网络,归一化 DC定义如下
在这里插入图片描述
Ki表示为节点的度数。

1.2 接近中心性

一个节点与所有其他节点的距离之和需要计算接近中心度。和较小的节点意味着它更接近所有其他节点,这表明该节点的重要性更高。归一化的CC本质上是距离的倒数,定义如下。
在这里插入图片描述
其中 n 表示网络中的节点数,dij 表示节点 i 和节点 j 之间的最短路径距离。

1.3 中介中心

在中介中心性中,节点的重要性是通过该节点的最短路径的数量来衡量的。一个节点多次出现在节点之间的最短路径中意味着它具有很大的影响力。反映节点作为桥梁重要性的BC[19]定义如下。
在这里插入图片描述
其中分子用于表示节点 u 和节点 j 之间经过节点 i 的最短路径数,节点 u 和节点 j 之间的最短路径数用分母 表示。

1.4 特征向量中心性

特征向量中心性是衡量节点间传输影响和连通性的一种方法,考虑了邻居节点的重要性。 EC 认为来自关键节点的链接比来自琐碎节点的链接更有价值。给定图的邻接矩阵,特征向量中心性 [20] 定义如下。

在这里插入图片描述

其中 x 表示矩阵 A 的特征值,namuta对应的特征向量。

1.5 PageRank 中心性

PageRank中心性[21]是一种基于网页之间的相互超链接计算的技术,用于衡量特定网页在搜索引擎索引中相对于其他网页的重要性。一个页面的重要性取决于所有只引用它的页面的重要性。在初始阶段,网页通过链接关系构建一个网络地图,每个页面都被赋予相同的PageRank值。然后每个页面将其当前的PageRank值平均分配给该页面包含的out-links,从而使每个链接获得相应的权重。最后,每个页面将所有进入该页面的链接传入的权重相加(如下),就可以得到一个新的PageRank分数。当每个页面得到更新后的PageRank值时,就完成了一轮PageRank计算。上述过程不断迭代,稳定下来就是最终结果。其中一个页面的PR值用以下形式表示
在这里插入图片描述
其中α表示到达某个页面并继续向后浏览的概率,Oi表示所有链接到第i个网页的网页的集合。网页 j 的链接数用 L(j)表示,N 表示网页的总数。

二、重力中心模型经典方法

2.1 重力中心模型

基于万有引力定律的重力中心方法同时考虑了局部和全局信息。在GC中,一个节点的度相当于质量,取两个节点之间的最短距离作为距离。节点 i 的 GC [30] 定义如下。
在这里插入图片描述
其中 ki 和 kj 分别表示节点 i 和节点 j 的度数,dij 表示节点 i 和节点 j 之间的最短距离。引入截断半径 R=0.5(平均距离)来解决噪声和耗时问题,其中d表示平均路径长度。

2.2 加权重心模型

加权重心模型通过考虑节点的权重来修正 GC。引入特征向量概念的WGC[31]方法定义如下。
在这里插入图片描述
其中 dij 表示为节点 i 和节点 j 之间的最短距离。节点 i 和节点 j 的度数用 ki 和 kj 表示,ei代表最大特征值的归一化特征向量的第 i 个值。

2.3 广义重心模型

在广义重力中心性模型中,节点的质量由扩散能力表示。节点的传播能力取决于度数和聚集系数。节点 i 的 GGC [33] 定义如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

spi表示节点 i 的通信能力,阿尔法是一个自由参数,Ci是聚集系数,在实际应用中可以灵活调整。 dij 表示节点 i 和节点 j 之间的距离,R表示截断半径;

三、 两项最先进的措施

3.1 局部信息维度

  • 熵的的定义:
    在这里插入图片描述
  • 香农熵。用于测量局部信息维度中每个框的节点数。 LID [22] 考虑了中心节点周围的局部结构特征,定义如下
    在这里插入图片描述在这里插入图片描述
    其中 d 表示导数的符号,l 表示框的大小,术语pi(l)是信息包含在具有给定框大小 l 的中心节点 i 的 框内的概率;ni(l)表示方框中的节点数,N 表示网络中的节点总数。

3.2 模糊局部维度

  • 模糊局部维度使用模糊集(把待考察的对象及反映它的模糊概念作为一定的模糊集合,建立适当的隶属函数,通过模糊集合的有关运算和变换,对模糊对象进行分析) [35] 来研究距中心节点 [36] 不同距离的节点。节点的贡献受距离的影响,距离是通过模糊集在FLD上测得的。关注每个节点的局部属性的
    FLD [23] 定义如下。

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

其中 rt 是从中心节点 i 开始的半径。;Ni(rt,ε)表示最短距离小于从模糊集中获得的框大小 ε的模糊节点的数量。在这个术语中,Ni r_t 表示当节点 i 和 j 之间的最短距离小于框大小seita时的节点数。和 Mij(ε)表示当节点 j 到节点 i 的距离小于框大小ε时的隶属函数,其中 dij 代表中心节点 i 和节点 j 之间的最短距离。

四、论文提出的创新重力模型(EGM)

4.1 EGM思想

目前提出的基于重力的方法将影响半径设置为平均路径长度的一半,这使得网络中节点之间的交互范围无法准确测量。同时还有一个需要优化的方向是社团只用度代替,一个节点的邻居信息已经忽略。

  • 因此,为了修正近似截断半径,本文根据节点自身与其最远节点的关系来定义影响范围。
  • 更重要的是,为了选择合适的节点质量,使用信息熵来评估本地网络中的度分布。基于上述分析,提出了一种称为有效重力模型的方法,该方法基于精确的半径和价值信息来识别复杂网络中的影响者。

4.2 EGM实现流程

在这里插入图片描述
(1) 构建网络。将指示现实世界中的现象的给定无向网络用作输入。该网络的邻接矩阵用作输出。
(2) 获取网络的节点度分布(ki)和距离矩阵。第一步得到的邻接矩阵(边集和节点集)作为输入。并输出整个网络的度分布矩阵和表示节点对之间距离的最短路径矩阵。
(3) 计算准确的影响半径。度分布矩阵和最短距离矩阵作为输入。根据本文提出的方式,输出每个节点的准确影响半径。
(4) 计算节点的值。输入第二步得到的度数分布矩阵。输出一个值矩阵,表示每个节点的值。
(5) 获取影响节点的排名。输入第二步得到的最短距离,显式影响半径和值矩阵。最终在网络中输出所有节点的影响力排名。

4.3 具体实现过程

第 1 步:构建网络

指示现实世界系统的给定无向网络由图G(V,E)表示。在图G中; V表示网络中的节点集,E表示边集。图 G 存储为邻接矩阵,本文用 A 表示。矩阵中的元素 aij 位于第 i 行第 j 列,表示节点 i 和节点 j 之间的连接关系。 aij = 0,表示节点 i 和节点 j 之间没有边。相反,aij = 1 表示有边。

第 2 步:获取网络的节点度分布

根据第一步输出的网络邻接矩阵,得到度分布矩阵。节点 i 的度定义如下。
在这里插入图片描述
其中 ki 代表节点 i 的度数。 aij 是第一步。此外,源点和终点之间的最短路径是包含最少边数的路径。在本文中,如果两个节点之间没有路径,则将它们的最短距离分配为无穷大。并且从节点到自身的距离设置为零。

第 3 步:计算准确的影响半径

  • 在这一部分中,我们提出了一种新方法来计算每个节点的影响范围。事实上,我们认为每个节点的影响半径是不同的。由于我们需要探索节点的最大影响范围,因此考虑了节点与其最远点之间的关系。对于节点
    i,我们假设在节点 i 和距离 i 最远的节点 j 之间的路径上存在一个虚拟节点 s,其中节点 i 和 j
    的影响是相等的。这是因为当某个节点 x 位于节点 i 和节点 s 之间时;x仅受节点 i 影响。同理,当节点 x 位于节点 s 和节点 j
    之间时, x 仅受节点 j 影响。因此,节点 s 被定义为节点 i 和节点 j
    的影响的分界点,可以通过以下步骤得到。受万有引力公式的启发,(结论)节点对周围节点的影响与其自身信息成正比,与距离的平方成反比。
    因此,给定一个网络,节点 i 对分界点 s 的影响定义如下。

在这里插入图片描述

  • 其中 Ri 是节点 i 的影响半径(含义),表示节点 i 到分界点 s 的距离。同理,节点 j 对分界点 s 的影响公式如下。
    -在这里插入图片描述
  • 其中节点 i 和节点 j 之间的距离表示为 dij。对于分界点 s,它受到节点 i 和节点 j 的同等影响,即 Fis=Fjs。那么我们可以得到下面的等式。
    在这里插入图片描述
  • 求解方程后,得到节点 i 的最终影响半径公式,定义如下。
    在这里插入图片描述
  • 因为 j 是离 i 最远的节点,所以可以重写为以下形式(最终)。
    在这里插入图片描述
    特别地,如果有多个节点与 i 的最远距离相同,则这些节点构成最远节点域。最远节点域中节点的平均度数表示为Kmax(i)。

第 4 步:计算节点的值

  • 该部分介绍了节点的值,它评估了节点的本地信息。在我们看来,一个节点的价值取决于影响整个网络的能力。从局部来看,影响力大的节点一定是度数高的节点,即邻居多。并且从影响传播的角度来看,如果一个节点越重要,它就越有可能在多个潜在方向上向外传播。换句话说,如果一个节点对传播方向的选择有限,则该过程更有可能受到阻碍。对于具有一定局部影响力的节点,即局部网络中具有一定度数的节点,局部网络的度数分布对节点的重要性起着重要作用。如果邻居的度分布更均匀,信息传播的不确定性就会增加。基于以上分析,信息熵可以从信息传播的角度来衡量信息的价值,可以很好地描述社会影响的不确定性。因此,考虑到自身和邻域信息的节点的值在本文中定义如下。
    在这里插入图片描述
  • 其中 V i 定义为节点 i 的值; Ii 表示节点 i 的信息熵,ki 表示节点 i 的度数。每个节点的信息熵包含节点自身的特征和邻居节点的属性两个内容,更加合理和全面。节点 i 的信息熵定义如下。
    在这里插入图片描述
  • 其中 pj 表示信息包含在节点 i 的局域网中的概率(它是节点 j 的度数与其局域网度数之和的比值)。节点 i 的局域网用 Li 表示,覆盖节点 i、其邻居节点及其度数。Li直观图如下所示。
    在这里插入图片描述
  • 因此,pj 可以通过以下方式获得,
    在这里插入图片描述
  • 其中 kj 表示为节点 j 的度数。 分母表示节点 i 的局域网中所有节点的度数之和。综上,节点 i 的值可以写成如下形式。
    在这里插入图片描述
    它由属于节点本身和邻居节点的两部分信息组成。节点的信息用度来反映,邻居的信息用信息熵表示的度分布来考虑。

第 5 步:获取影响节点排名

  • 受万有引力定律的启发,基于修正的精确半径和值信息的 EGM 定义如下
    在这里插入图片描述
    其中 V i 和 V j 分别代表节点 i 和节点 j 的值。 dij 表示 i 和 j 之间的最短距离,Ri 是节点 i 的影响半径。

4.4 总结

综上所述,(本文将之前方法中设定为平均路径长度一半的模糊影响半径替换为精确影响半径。同时,节点的价值信息被视为质量,而不仅仅是节点的度数)。更重要的是,复杂网络的局部信息和全局信息在EGM中得到了充分的思考和组合。具体来说,考虑到本地信息,EGM充分利用节点在其本地网络中的度分布信息来衡量节点的价值,并通过信息熵来评估节点的传播能力。对于全局信息的组合,EGM通过考虑节点与其最远节点之间的交互来定义半径的范围,并通过引入每个节点之间的最短距离来评估重要性。总之,修改后的精确影响范围和考虑环绕度分布的节点的值信息构成了本文提出的EGM。

五、EGM实验结果

在本节中,使用 11 个真实世界的网络来测试所提出方法的合理性。同时,通过与五种经典措施的比较,证明了所提方法的有效性。此外,与三个类似的模型和两个最先进的措施相比,我们的方法的进步也得到了体现。六个不同的实验,包括前十个节点、节点中心性得分、个性化、SI模型、肯德尔系数和关系分析,充分证明了所提出的方法在复杂网络中识别关键吊具的优越性

5.1 数据集描述

本文使用的数据集分为六类,包括社交网络、协作网络、通信网络、交通网络、基础设施网络和技术网络。在社交网络中,Facebook 网络 [37] 由 Facebook 中的匿名社交圈组成。政治博客 [38] 是有关美国政治的博客之间的直接超链接网络。维基百科社区管理员的投票数据在维基百科投票网络[39]中进行了描述。在协作网络中,爵士网络 [40] 表示爵士音乐家之间的协作关系。网络科学[41]展示了研究网络科学的科学家的联合工作过程。 Arxiv GR-QC [42] (General Relativity and Quantum Cosmology) 合作网络,来自电子印刷arXiv,涵盖了发表在广义相对论和量子领域的作者之间的科学合作论文宇宙学。在通信网络中,通过电子邮件进行的通信在电子邮件网络[43]中进行了描述。 EEC 网络 [44] 是与欧洲研究机构有关的电子邮件交换网络的成员。运输网络中的美国航空公司网络[45]涉及美国的航空运输。基础设施网络中的电力网络[46]代表了美国西部国家电网的拓扑结构。技术网络中的路由器网络[47]是互联网结构的对称快照。包含 11 种不同类型网络的详细信息如表 1 所示。N和 E分别表示节点集和边集。 d和 k分别表示网络的平均最短距离和平均度。聚类系数,表示一个节点的相邻节点之间的互连程度,用C表示。此外,将Jazz、USAir、NS、EEC、Email和PB划分为小规模网络。 Facebook、GrQc、Power、Router和WV分为大型网络。
在这里插入图片描述

5.2 相似度实验(挑选前十个种子节点)

  • 本实验的目的是验证所提出的方法 EGM、包含 DC、CC、BC、EC、PC 的经典方法、包括 GC、WGC、GGC 的类似方法以及包括 LID 和 FLD在内的最先进测量方法之间的相似性。这些方法之间的相似性是通过排名列表中相同的前十个节点的数量来衡量的。具体来说,不同的方法从不同的角度评估复杂网络中的影响者,并且获得的前十个节点是不同的。如果这两种方法产生的前十个节点中有更多相同的节点,则表明这两种方法具有更大的相似性。相反,如果相同节点的数量较少,则说明这两种方式的相关性不强。表2 显示了通过上述方法在 11 个网络上进行的真实实验生成的前 10节点排名列表,反映了不同度量之间的相似性。我们使用区分颜色来描述相同的前 10 节点这是通过不同的措施获得的。
  • 例如,如果 EGM 排名表和其他方法生成的排名表中有相同的节点,那么这些相同的节点将被着色。相反,黑色表示通过 EGM和其他方法获取的不同节点。如表 2 所示,DC、EC、GC、WGC 和 GGC 获得的前 10 个节点与 Jazz 中的 EGM获得的节点大致相同。所有方法与 EGM 的匹配度都较高,这也证明了在 USAir 中 EGM 与它们的相似度更大。在 NS 中,除 EC 和 WGC 外,每个度量之间的相似度更高。对于EEC来说,EGM得到的topten节点与DC所拥有的节点完全等价,说明它们之间的匹配度比较高。 CC 和 EGM 产生的结果在 Email 中是完全一样的。 LID 和 EGM 的 topten 节点在 PB 中是相等的。在 Facebook 中,EC 和 WGC 与 EGM 的匹配度最低。 LID 和 EGM 之间的差异在 GrQc 中最大。对于 Power来说,各种方法之间的相似之处并不明显。 CC、GC、GGC 和 FLD 的结果与 Router 中的 EGM近似相似。值得注意的是,DC的结果与WV中EGM的结果完全相同。总而言之,每种方法在每个网络上的前十名节点的排名与 EGM 的排名大致相同,除了 Power,这表明我们的方法与大多数现有措施相似并证明了其可靠性。
    在这里插入图片描述
    在这里插入图片描述

5.3 中心度得分

实验的目的是计算节点的中心度得分,结果以热图的方式展示。本实验采用类似的GC、WGC、GGC、最先进的LID、FLD和传统的BC、EC措施进行对比。每种方法的相对重要性分布如图 1 所示。 10-13,其中颜色代表节点的重要性。如果某个节点的颜色较深,则表示该节点的状态较高。如图所示。从图 10-13 可以看出,所有测度得到的节点分布的相对重要性几乎相同。六个小规模网络的结果如图 所示。

  • 在 Jazz 中,FLD 获得的中心性分数太大。 EGM 和 LID 都可以更好地区分节点。 FLD 和 LID 在 USAir中的性能更好。

在这里插入图片描述

  • 对于 NS、EGM 和 LID 有类似的结果。而 EGM、LID 和 FLD 可以很好的区分节点。EGM、LID和FLD在EEC中具有很强的区分能力。
    在这里插入图片描述
  • EGM 的有效性仅次于电子邮件中的 FLD。在PB中,FLD计算的分数偏大,EGM和LID的表现更好。
    在这里插入图片描述
  • 四个大规模网络的实验结果如下图所示。对于 GrQc,EGM 的性能仅次于 FLD。EGM、LID和FLD可以区分节点在Power和WV中的重要性。简而言之,在所有网络上,EGM 的完成都优于 GC、WGC 和 GGC等类似方法,这表明我们对引力模型方法的改进对于识别影响者是有效的。同时,EGM、LID和FLD的区分能力也超越了其他方法
    在这里插入图片描述

5.4 个性化(区分节点的能力)

4.3.2.个性化(区分节点的能力)
为了比较不同措施区分节点的能力,个体化实验用于统计11个网络上每种方法获得的具有相同分数的节点的频率。个性化[48]定义为以下公式。
在这里插入图片描述
其中 Nu表示为具有唯一分数的节点数,N是整个网络中的节点数。在这个实验中,如果一种方法获得更多的排名,它会更好地工作。此外,如果一种方法具有较高的个性化,也证明该方法具有较强的区分能力。

  • 通过十个网络的个性化实验。表3详细记录了不同方法的个性化,其中前三个个性化值分别用红色、黄色和蓝色表示。
    在这里插入图片描述
  • 我们可以从下图中看到,WGC、GGC 和 EGM 在 Jazz的相同排名中的节点较少(纵轴)。对于USAir来说,EGM的表现虽然不是最好的,但击败了DC、CC和BC(纵轴显示EGM排名更丰富)。
    在这里插入图片描述
  • 在 NS 和 Email 中,EGM 的性能仅次于 WGC(横轴排名WGC更丰富)。对于 EEC,EGM 的区分能力排名第三。
    在这里插入图片描述
  • 在 PB 中,EGM 获得的每个排序中的节点频率最低,排序间隔最大。
    在这里插入图片描述
  • EGM 在 GrQc 和 Power 中击败了除 WGC之外的所有方法。通过EGM在Router和WV这两个大型网络中得到每个排序中的最低频率和最大跨度。更重要的是,从表 3 可以看出,EGM的区分能力在所有网络中排名前三。尤其是在PB、Router、WV中EGM得到的频率最低、排名最高,可以很好的区分节点的感染能力。总的来说,通过图的分析。从下图可以得出结论,EGM 的性能仅次于 WGC,但对于大规模网络,EGM 相对更好。
    在这里插入图片描述
    在疾病传播期间,复杂网络S(t) + I(t) = N 的节点总数保持不变。从这个方程可以得出结论,如果受感染节点的数量增加得更快,则感染源更重要。

5.5 SI模型

本实验选取4.2节中每种方法的前10个节点作为初始感染节点,其余节点作为易感节点。这些传染性节点将以一定的概率beita感染周围的易感节点,该概率beita设置为 0.1。传播时间由 t 表示。以感染节点数 F(t)作为指标,确定初始选定节点在特定时间 t 的感染能力。每个实验独立进行一百次以获得客观结果,得到的平均结果如。 16和下图所示。在所有的措施中,如果一个方法最初选择的前十个节点影响更大,这些节点的感染力会更强,最终的实验会导致更多的感染节点。

  • 下图描述了 SI 模型在六个小规模网络中的实验结果。在 Jazz 中,EGM 在 t >= 40 时达到最佳效果。对于USair,EGM 获取的感染节点的数量每时每刻都超过其他方法,这证明了 EGM 的卓越能力。
    在这里插入图片描述
  • 在 NS 中,EGM 在 t >=20 时具有最强的传输能力,这在很大程度上证明了 EGM 在几乎整个时间段内的优势。对于 EEC,EGM在 25<= t<= 40 和 42 <= t <=46 时获得最大感染节点数。
    在这里插入图片描述
  • 在电子邮件中,EGM 在 t >= 2 时表现出优于其他方法的能力。当 3 <= t <=25 和 t >=28,EGM在PB中具有最强的传染能力。
    在这里插入图片描述
  • 四个大型网络中的传播能力测试如图​​ 所示。虽然受感染最多的节点不属于 Facebook 中的 EGM,但它仅次于 CC。对于GrQc,当 t P 11 时,EGM 的传输能力优于其他方法。在 Power 中,当 t P 18 时,EGM拥有的感染节点数显着高于其他方法,这显示了 EGM 最强的优势。对于 WV,EGM 在 t P 33时显示出最好的成绩。可以得出结论实验网络中除Facebook外最强的传播能力是EGM在一定时间内拥有的。更重要的是,EGM的性能远远超过GC和WGC等类似方法,这表明EGM是迄今为止基于重力模型的最佳度量
    在这里插入图片描述

5.6 肯德尔系数

为了测试所提出方法的可靠性,各种中心性方法与作为感染能力标准度量的 SI 模型之间的相关性通过 Kendall 系数 [50] 进行评估。 Kendall 系数 tao 是用于衡量两个随机序列之间相关性的统计值,定义为一致对和不一致对之间的减法与总对数的比率。 Kendall 系数 s 用以下形式表示。
在这里插入图片描述

  • 其中 NC 表示一致序列对的数量,不一致序列对的数量表示为 ND,序列长度用 N 表示。具体而言,假设两个随机序列 A 和 B 的第 i 个值分别用ai和bi表示,任意两个对应的值组成两个序列对; 如果满足 ai > aj 和 bi > bj 或 ai < aj 和 bi < bj 的条件,ðai; biÞ 和 ðaj; bjÞ 被认为是一致的。相反,如果满足ai > aj 和bi < bj 或ai < aj和bi > bj 的条件,则认为这两个序列对不一致。 在本实验中,用 SI 模型中十步F(10)感染的节点数来表示每个节点的感染能力。为了使结果更全面,改变SI模型的传播概率beita以测试不同的情况。每个实验独立进行一百次以获得客观结果。实验结果的平均情况如图1 和图 2 所示。如果一个方法最终拥有更高的tao值,则表明该方法更类似于 SI模型的标准度量,这也证明该方法在准确性方面具有更好的性能。在六个小规模网络上的实验结果如图 18 所示。当感染率 beita= 0.18 时,EGM 的t值在 Jazz 中最高; 对于 NS 来说,在 0.11< beita<0.13 时实现 EGM 最好。 EGM的tao值仅低于 EEC 中的 WGC 和 EC。 在Email中,当感染率b = 0.45时,EGM拥有仅次于CC的s值;0.46、0:47和0.51对于 PB,EGM 的 tao值超过了所有方法,这表明 EGM 的性能最好。
    在这里插入图片描述
  • 在描述四个大型网络的实验结果的图 19 中,当感染率 0.036 b 6 0:08 时,EGM 的能力远优于 Facebook 中的其他措施。在 GrQc 中,当 b = 0:11 时,EGM 的性能最好。 EGM 在 Power 中击败了除 GC之外的其他方法。对于Router,EGM在0:28 6 b 6 0:37时排名第五。总之,在 Jazz、NS、PB、Facebook 和GrQc 中,我们的方法在某些感染率下获得了最高的t值。特别是在 NS、PB、Facebook 和 GrQc 等网络中,通过 EGM实现了对重力模型的更大改进。

在这里插入图片描述

5.7 相关性分析

本实验的目的是通过评估 EGM 与其他方法之间的关系来证明所提出方法的合理性。此外,引入SI模型来评估节点之间的显著性,其中传播概率b设置为0.1,时间t设置为10。每个实验在九个不同的网络上进行测试综合衡量EGM与其他方法的相关性。所有实验都进行了一百次,平均情况如图 1-8 所示。图中的每个点表示现实世界网络中的节点。当b = 0:1时,节点的感染能力可以通过Fð10Þ获得,由点的颜色表示。颜色越深,意义越大。如果 EGM 较大的节点的另一个度量值也很大,则说明 EGM 与该方法正相关。相反,如果 EGM 较小的节点的另一个度量值较大,则说明 EGM 与该方法呈负相关。如图 1-8 所示,大多数节点在网络中的中心性较小,遵循复杂网络的无标度特征。在图 1 中,DC 和 EGM 呈正相关。尤其是除了GrQc、Power和Router之外,它们之间的相关性更加明显。如图 2 所示,CC 和 EGM 之间的正相关性略强。图 3 中 BC 和 EGM 之间的相互关系较弱。对于图 4,EC 和 EGM 之间的关系在 NS、GrQc 和路由器中较弱。在图 5 中,PC 和 EGM 之间的关系在 GrQc、Power 和 Router 中并不明显。 EGM 是 GC 的改进,在图 6 中与 GC 有很强的相互关系。如图 7 所示,LID 和 EGM 在 Jazz、USAir、NS、EEC 和 PB 中呈正相关。相反,LID 和 EGM 在 Power 中呈负相关。特别是LID和EGM之间的负相关在Email、GrQc和Router中变成了正相关。对于图 8,EGM 与 FLD 具有很强的正相关性。可以得出结论,EGM与DC、CC、PC、GC、LID和FLD具有很强的相关性,这反映了我们识别影响者方法的合理性。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、 实验结论及改进

6.1 结论

本文提出的 EGM 基于精确的半径和值信息,用于识别复杂网络中的关键节点。本文的两个创新点是确定了准确的影响半径和客观地选择了节点质量。在影响半径方面,EGM通过计算重力相互作用的范围来解决基于重力的模型中截断半径模糊的问题。在海量选择方面,引入信息熵来综合衡量邻居节点的影响力,从而推导出节点的价值信息。更重要的是,提出的方法 EGM,包含 DC、CC、BC、EC、PC 的经典方法,包括 GC、WGC、GGC 的类似方法,以及包含 LID、FLD、通过对 11 个真实世界网络的 6 个不同实验进行比较。总之,EGM 已被证明在识别复杂网络中的关键节点具方面具有卓越的有效性和稳定性。

6.2 改进

一些正在进行的工作如下。在应用方面,EGM目前仅适用于无向网络。对于有向加权网络,在EGM中计算影响半径时,需要参考链路的方向来衡量节点的影响范围。并且在为节点分配值信息时可以引入权重来控制节点的值。另外,在精度上,一阶邻居节点在测量节点的价值信息时,只考虑EGM。二阶邻域甚至聚类系数因子都可以用来代替节点的质量。最终,一个不可避免的问题是如何在两个节点EGM相同时进行排名。k-shell算法可以在以后的研究中引入,可以很好的考虑节点的位置。未来,我们将继续改进 EGM,以更好地识别复杂情况下的影响者。


您的点赞和关注是对博主最大的支持,后续分享更多有用知识

  • 3
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值