讲完了弹簧单元和杆单元,接下来讲一讲稍微复杂一点的梁单元的有限元实现。
什么是梁单元
梁单元为细长结构构件,通常只承受横向载荷。无论是杆单元还是梁单元都是结构力学中基本的承力构件之一,二者都是一维单元,物理特征基本相同,二者之间的区别主要是承力形式不同,规定杆单元只承受轴向力,梁单元为可承受横向力和弯曲力矩。下图中规定了梁单元节点位移、转角、力、力矩的正方向,力和位移的正方向指向y轴的正向,转角和力矩为逆时针为正。
引言
采用直接刚度法推导线弹性梁单元的刚度矩阵,应用有限元分析的一般步骤实现梁单元的结构的静力学问题求解。
本文由以下几个部分组成:
- Euler-Bernoulli 梁理论简介
- 局部坐标系下梁单元的刚度矩阵和方程的推导
- 刚度矩阵和方程的组装
- 坐标变换
- 平面刚架结构的有限元分析实例及matlab代码
1 Euler-Bernoulli 梁理论简介
Euler-Bernoulli 梁理论是由Euler和Bernoulli两个人推导得到的,并由此命名。Euler-Bernoulli 梁理论是基于平断面假定建立的,即梁弯曲前后,垂直于纵向主轴的平面保持为平面并垂直于主轴,只考虑弯曲变形,该理论适用于线弹性梁的力学行为分析。
为作用在梁上的分布力,v为梁的横向位移,即挠度,x为纵向坐标。
2 局部坐标系下梁单元的刚度矩阵和方程的推导
有限元分析的一般步骤如下:
step1 单元类型的选择
确定单元自由度,本部分仅对承受横向载荷的梁单元进行讨论,因此每个单元节点有两个自由度,单元节点位移为 v 1 v_1 v1和 ϕ 1 \phi_1