引言
对于空间实体微元,应力状态如下图所示,由三个方向的正应力和三个方向的剪应力组成,正应力垂直于微元表面,剪应力在微元表面内。
剪应力互等定理
因此对于空间问题,应力的独立分量有6个
三维问题的求解相对复杂,有时可根据分析问题的特点对其进行适当简化,如简化为平面应力问题或平面应变问题,平面应力问题和平面应变问题都是二维问题,求解相对简单,二维问题的有限元求解需要用到二维单元,即面单元。
本文利用平面三角形单元离散平面结构,给出平面问题的有限元求解的一般过程。
本文由以下几个部分组成:
- 平面应力和平面应变基本概念
- 二维应力应变状态
- 平面三角形单元的刚度矩阵和方程的推导
- 平面结构的有限元分析实例及matlab代码
1 平面应力和平面应变基本概念
平面应力问题
平面应力是指所有的应力都在平面内,对于薄板结构,即板厚远小于结构的另外两个尺度,只承受面内载荷,例如下图所示平板,在xy平面内右侧受到拉力T的作用,假定此时垂直于平面的法向应力和剪切应力为0,此时问题得到简化。
所有厚度方向的应力为0
平面应变问题
类似的可定义平面应变问题,平面应变状态为所有长度方向的应变为0,典型结构为等截面的细长体,如下图所示,只承受xy平面内的载荷,且载荷沿长度方向保持不变。
根据平面应变的定义有
2 二维应力应变状态
下图给出了平面微元的应力状态,由于泊松效应的存在,平面应力状态下的Z方向的正应变不为零,以及平面应变状态下的Z方向的正应力不为零,但由广义胡克定律可知无论是平面应力还是平面应变状态,应力和应变的独立变量都只有3个。
平面问题应力和应变独立变量的列向量
应力应变关系
对于平面应力状态
对于平面应变状态
3 平面三角形单元的刚度矩阵和方程的推导
step 1 单元类型的选择
平面问题的三角形单元每个节点有两个方向的自由度,每个单元共有6个自由度。