BEGIN
塔尖算法就是维护一个栈,还有他能回溯到的最早的栈中节点的时间戳。
还要记录一下时间戳。
设回溯数组为 last,时间戳数组记为vis,判断他有没有在栈中数组为vis1
然后考虑last的更新方程。
A.假如说边u—>v 假如说v没有被访问过,那么的话
last[u]=min(last[u],last[v]); 这时候我感觉应该来个初始化,全部置为63;
B.假如说v被访问过,但是却在栈中,那么的话
**last[u]=min(last[u],last[v]); last[u]=min(vis[v],last[u]);**两个,但是因为中间一个被重复算过,就不用了。但是蒟蒻 我为了好理解,就不改了 。
假如说更新的时候大于他了,那么肯定是他本身,小于,说明他还能往上走,因为上面的都能到他,因为不能到他的都已经经过
因为这个东西他说明他是一个强连通分量的根。第一个出现的这个强连通分量的点就是这个强连通分量的根。假如他是栈顶元素的话,那么说明要不他不是这个强连通分量的,要么他只有一个,因为假如这个栈的强连通分量的根是他,那么他一定会遍历完所有的这个强连通分量之后才回来执行判断shijian和last相等这个指令。既然最后一个是他,那么一定可以直接出栈。因为这时候说明他是这个的根。只有他一个。
> !!当shijian和last相等的时候那么这个就是这个强连通分量的根!!。
来上塔尖代码
我写的可能比较长,但是容易理解。。。。。。。。。。。。。。
void tajian(int x) {
//cout<<"x="<<x<<endl;
z[++now1]=x;//入栈
vis2[x]=1;//在栈中
last[x]=shijian[x]=++now;
vis[x]=1;
for(int i=0; i<g[x].size(); i++) {
int y=g[x][i];
if(!vis[y]) {
tajian(y);//cout<<"x="<<last[x]<<"y="<<last[y]<<endl;
last[x]=min(last[x],last[y]);
} else if(vis2[y]) {
//cout<<"nimazhal="<<x<<endl;
last[x]=min(last[x],last[y]);
last[x]=min(last[x],shijian[y]);
}
}
if(shijian[x]==last[x]) {
now2++;
while(z[now1]!=x) {
from[z[now1]]=now2;
vis3[z[now1]]=1;
vis2[z[now1]]=0;
--now1;
}
from[z[now1]]=now2;
vis2[z[now1]]=0;
vis3[z[now1]]=1;
--now1;
}
}
注意事项
- vis数组含义
vis数组————正常dfs数组,如果后面用的话,记得清零。
不然小心爆零。
vis2数组————记录这个数有没有在栈中
vis3数组————记录这个数已经进行过操作,以便于后面使用
因为你一次的话求不出所有的SCC,要做好几次。
for(int i=1; i<=n; i++)
if(!vis3[i])tajian(i);
- 容易错的地方
- 出栈后一定要把vis2[x]变为0
- 当last==shijian时假如它不等于栈顶元素,需要循环。
-因为这个东西他说明他是一个强连通分量的根。第一个出现的这个强连通分量的点就是这个强连通分量的根。假如他是栈顶元素的话,那么说明要不他不是这个强连通分量的,要么他只有一个,因为假如这个栈的强连通分量的根是他,那么他一定会遍历完所有的这个强连通分量之后才回来执行判断shijian和last相等这个指令。既然最后一个是他,那么一定可以直接出栈。因为这时候说明他是这个的根。只有他一个。
下图:
先遍历黄的,然后再绿的,最后到红的,这时候红的自己等于自己满足。
再比如下图,顺序和上图一样
你说下面有连通分量怎莫办,额??????你是以根为分界的,所以你回一个一个加,这个时候里面有两个根
- 重建图
for(int i=1; i<=n; i++) {
for(int j=0; j<g[i].size(); j++) {
int y=g[i][j];
if(from[y]!=from[i])
g1[from[i]].push_back(from[y]);
}
}