PCL 计算USC(UniqueShapeContext)特征描述子

PCL库提供了UniqueShapeContext(USC)算法,用于点云数据中的形状识别和提取。USC通过计算点云中每个点的形状上下文生成唯一描述符,以区分复杂数据中的重复形状。该算法的关键类包含多个方法如设置不同半径和搜索参数,以适应不同应用场景。代码示例展示了如何使用PCL进行USC计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概述

  USC(UniqueShapeContext)特征描述子是一个用于在点云数据中识别和提取独特形状的算法。这个算法的主要目的是在复杂的点云数据中找到重复出现的形状,并且只保留一个。它基于一个独特的形状描述符,通过计算点云中每个点的形状上下文,生成一个唯一描述符来识别独特的形状。

  pcl::UniqueShapeContext类实现唯一形状内容 (Unique ShapeContext) 描述子计算算法,这个类的主要方法包括:

UniqueShapeContext () // 构造函数
virtual ~UniqueShapeContext () // 析构函数
getAzimuthBins () // 获得方位维度区间数目。
getElevationBins () // 获得高度维度区间数目。
getRadiusBins () // 获得径向维度区间数目。
setMinimalRadius () // 设置搜索时用的最小半径。
getMinimalRadius () // 获得搜索时用的最小半径。
setPointDensityRadius () // 设置计算点云密度时所用的半径。
getPointDensityRadius () // 获得计算点云密度时所用的半径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶探索站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值