字典学习算法

分为固定基字典学习型字典

学习型字典 是指通过训练大量与目标数据相似的数据,学习其特征获得的字典。字典学习主要包括两个阶段,一个是字典构建阶段,一个是利用字典进行样本表示阶段。

首次提出:最优方向法(Method of Optimal Directions,简称MOD)1999年

一种 基于样本学习的字典学习算法。它的核心思想是通过迭代优化的方式来更新字典,以 最小化信号的 重构误差。MOD算法的目标是在给定一个训练样本集X的情况下,找到一个字典D,使得信号Y可以被D以稀疏的方式表示,即求解以下优化问题:

MOD算法的更新策略是通过最小化表征误差来实现的。通过对目标函数求偏导,可以得到以下更新公式:

这个更新过程通常需要几十次迭代才能收敛,是一个比较可行的方法。然而,MOD算法的缺点在于它在运算过程中需要对矩阵求逆,这会导致较大的计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值