之前研究存在的问题、论文的出发点:
- 全局上下文特征对于配准很重要,Transformer被用于提取全局上下文特征,vanilla Transformer忽略了点云的几何结构,只利用高级点云特征,这使得学习到的特征在几何上不那么具有鉴别性,并诱导了许多异常值匹配
- low inlier ratio in the putative correspondences.
- 基于位置嵌入,利用坐标信息编码是可变的,在配准过程中,输入点云位置变换会出问题。对几何信息进行编码,仅编码点对的距离和点三元组的角度。
- 现有的方法[25,36]通常将超点匹配表述为多标签分类问题,并采用双softmax[25]或最优传输的交叉熵损失[23,36]。每个超点都被赋值(分类)到其他一个或多个超点,其中地面真相是基于补丁重叠计算的,很可能一个补丁可以与多个补丁重叠。
文章的主要研究内容:
- 分层对应策略:由粗到细,利用KPConv-FPN下采样,提取逐点特征,第一个和最后一个(最粗)级别的下采样点对应于密集点和要匹配的超点。
- 利用Geometric Transformer ,不仅使用高级点云特征,还捕捉点云内部结构与几何一致性。得到混合特征。
- 点云的一些补丁在几何上不那么具有鉴别性,在其他点云中有许多相似的补丁。除了我们强大的混合特征外,我们还在混合特征的高斯相关矩阵 上执行双归一化操作 [22,25] 以进一步抑制模糊匹配----有效抑制错误匹配
- 选择以度量学习