拓扑学是数学的一个分支,研究的是空间的性质和结构,特别是那些在连续变换下保持不变的性质。这种研究不涉及测量和数的概念,而是关注形状和位置的相对性质。拓扑学的概念和方法被应用于许多数学领域,包括代数拓扑、微分拓扑和几何拓扑等。
以下是一些拓扑学中的基本术语和概念:
-
拓扑空间:一个集合,配合一个定义在其上的拓扑结构,这个结构定义了哪些子集是开集。
-
开集:在拓扑空间中,开集是指那些包含其所有内点的集合。
-
闭集:如果一个集合的补集是开集,那么这个集合就是闭集。
-
连续函数:在拓扑空间之间,如果一个函数的逆映射开集到开集,那么这个函数就是连续的。
-
同胚:如果存在一个连续的双射函数,并且其逆函数也是连续的,那么这两个拓扑空间就是同胚的,意味着它们在拓扑上是相同的。
-
连通性:如果一个拓扑空间不能被分成两个非空的开集,那么它是连通的。
-
紧致性:如果一个拓扑空间的每一个开覆盖都有一个有限子覆盖,那么它是紧致的。
-
基:一个拓扑空间的基是一组开集,使得空间中的每一个开集都可以表示为这些基集的并集。
-
商空间:通过等价关系定义的拓扑空间,其中等价类成为新空间的点。
-
同伦:如果两个连续函数可以连续地变形为彼此,那么它们是同伦的。