终端滑模控制(TSM)

终端滑模控制 (Terminal Silding Mode Contral, TSM)

在之前的文章中我们介绍了滑膜控制理论,我们是选取了一个滑模面,使系统达到滑模面后误差逐渐下降到0,收敛的速度可以通过调节滑膜面的参数来实现,后来人们为了使滑模控制能有更好的性能,就将滑模面设计为非线性函数,构造Terminal滑膜面,使得在滑模面上误差可以在指定时间T内收敛到0,于是就产生了终端滑膜。

终端滑模的滑模面

终端滑膜的滑膜面有很多种形式,这里我们介绍一种经典的滑模面
s = x ˙ + α x + β x q p s=\dot x+ \alpha x + \beta x ^ {\frac {q}{p}} s=x˙+αx+βxpq
其中 x x x 是状态变量, α , β > 0 \alpha,\beta > 0 α,β>0 p , q p,q p,q 是正奇数,且 q < p q < p q<p,我们知道滑模控制有两个阶段,第一个阶段是到达阶段,这一阶段是指系统从初态到达 s = 0 s=0 s=0 的滑模面上,第二阶段是滑模面上的滑动阶段,在滑动阶段 s = 0 , s ˙ = 0 s=0,\dot s=0 s=0,s˙=0,在滑动阶段 s = 0 s=0 s=0 所以 s ˙ = 0 \dot s = 0 s˙=0

如果我们将 s = 0 s=0 s=0 ,可以得到一个微分方程,虽然无法解出微分方程的解析解,但是可以通过仿真得到微分方程的数值解,数值解可以看到在滑模面上时必将在一定时间内收敛为0。

控制器设计

考虑二阶不确定非线性系统
{ x ˙ 1 = x 2 x ˙ 2 = f ( x ) + g ( x ) u + d ( x ) \begin{cases} \dot x_1 = x_2 \\ \dot x_2 = f(x) + g(x)u + d(x) \end{cases} {x˙1=x2x˙2=f(x)+g(x)u+d(x)
其中 x = [ x 1 , x 2 ] T x = [x_1,x_2] ^ {T} x=[x1,x2]T d ( x ) d(x) d(x) 代表不确定的外部干扰,且有 d ( x ) ≤ D d(x) \le D d(x)D,即干扰有上界

对于二阶系统我们可以将滑膜面设计为
s = x 2 + β x 1 q p s = x_2 + \beta x_1 ^ {\frac {q} {p}} s=x2+βx1pq
其中, β > 0 \beta > 0 β>0 , p , q > 0 p,q>0 p,q>0 且为正奇数。对滑模面求导
s ˙ = x ˙ 2 + β q p x 1 q p − 1 x ˙ 1 = x ˙ 2 + β q p x 1 q p − 1 x 2 = f ( x ) + g ( x ) u + d ( x ) + β q p x 1 q p − 1 x 2 = − ε s g n ( s ) \begin {align} \dot s &= \dot x_2 + \beta \frac {q} {p} x_1^{\frac {q} {p} - 1}{\dot x_1} \nonumber \\ &= \dot x_2 + \beta \frac {q} {p} x_1^{\frac {q} {p} - 1}{x_2} \nonumber \\ &= f(x) + g(x)u + d(x) + \beta \frac {q} {p} x_1^{\frac {q} {p} - 1}{x_2} \nonumber \\ &= -\varepsilon sgn(s) \nonumber \end{align} s˙=x˙2+βpqx1pq1x˙1=x˙2+βpqx1pq1x2=f(x)+g(x)u+d(x)+βpqx1pq1x2=εsgn(s)
反解得到控制量 u u u 可得
u = − g − 1 ( x ) ( f ( x ) + β q p x 1 q p − 1 x 2 + ( D + ε ) s g n ( x ) ) u = -g^{-1}(x)(f(x)+\beta \frac{q}{p} x_1^{\frac {q} {p} - 1}x_2 + (D+\varepsilon)sgn(x)) u=g1(x)(f(x)+βpqx1pq1x2+(D+ε)sgn(x))
稳定性分析,设李雅普诺夫函数 V = 1 2 s 2 V = \frac {1} {2} s^2 V=21s2,所以有 V ˙ = s s ˙ \dot V = s \dot s V˙=ss˙,将 u u u 带入可得
V ˙ = s d ( x ) − ( D + ε ) ∣ s ∣ ≤ − ε ∣ s ∣ \dot V = sd(x) - (D+\varepsilon)|s| \le -\varepsilon |s| V˙=sd(x)(D+ε)sεs
所以此控制器可以稳定。

有限时间收敛证明

s = 0 x 2 + β x 1 q p = 0 x ˙ 1 + β x 1 q p = 0 d x 1 d t = − β x 1 q p d t d x 1 = − 1 β x 1 − q p d t = − 1 β x 1 − q p d x 1 ∫ 0 t d t = ∫ x 0 0 − 1 β x 1 − q p d x 1 \begin{align} s &= 0 \nonumber \\ x_2 + \beta x_1 ^ {\frac {q} {p}} &= 0 \nonumber \\ \dot x_1 + \beta x_1 ^ {\frac {q} {p}} &= 0 \nonumber \\ \frac{\text d x_1}{\text d t} &= -\beta x_1 ^ {\frac {q} {p}} \nonumber \\ \frac{\text d t}{\text d x_1} &= -\frac {1} {\beta} x_1 ^ {- \frac {q} {p}} \nonumber \\ {\text d t} &= -\frac {1} {\beta} x_1 ^ {- \frac {q} {p}} {\text d x_1} \nonumber \\ \int_{0}^{t} {\text d t} &= \int_{x_0}^{0} -\frac {1} {\beta} x_1 ^ {- \frac {q} {p}} {\text d x_1}\nonumber \\ \end{align} sx2+βx1pqx˙1+βx1pqdtdx1dx1dtdt0tdt=0=0=0=βx1pq=β1x1pq=β1x1pqdx1=x00β1x1pqdx1

可以得到从任意初始状态 x ( 0 ) ≠ 0 x(0) \ne 0 x(0)=0 出发沿着滑模面到 x = 0 x=0 x=0 的时间为:
t s = p β ( p − q ) ∣ x 1 ( 0 ) ∣ ( p − q ) / p t_s = \frac {p} {\beta (p-q)}|x_1(0)| ^ {(p-q)/p} ts=β(pq)px1(0)(pq)/p

实例

假设系统模型为如下的一阶系统
x ˙ = 2 x + x 2 + u \dot x = 2x + x^2 +u x˙=2x+x2+u
选定滑模面
s = x ˙ + x + x 1 3 s = \dot x + x + x ^{\frac {1} {3}} s=x˙+x+x31
s = 0 s = 0 s=0
0 = x ˙ + 2 x + x 1 3 = 2 x + x 2 + u + x + x 1 3 = x 2 + 3 x + x 1 3 + u 0=\dot x + 2x + x ^{\frac {1} {3}} = 2x + x^2+u+ x + x ^{\frac {1} {3}} = x^2+3x+x ^{\frac {1} {3}}+u 0=x˙+2x+x31=2x+x2+u+x+x31=x2+3x+x31+u
得到控制量
u = − x 2 − 3 x − x 1 3 u = -x^2-3x-x ^{\frac {1} {3}} u=x23xx31

奇异性问题

我们知道滑模控制有两个阶段,但是上述的滑模面的设计存在一个严重的缺陷,存在奇异问题,奇异主要出现在 x q p x ^ {\frac {q} {p}} xpq 这一项,我们对滑膜面进行求导,可以得到
s ˙ = x ¨ + α x ˙ + β q p x q p − 1 \dot s = \ddot x + \alpha \dot x + \beta \frac {q} {p} x ^ {\frac {q} {p} - 1} s˙=x¨+αx˙+βpqxpq1
在之前的设计中保证了 q < p q<p q<p 所以 q p − 1 < 0 \frac {q} {p} - 1 < 0 pq1<0 ,当出现 x = 0 x = 0 x=0 时,分母就会为0(倒数原因),就会出现奇异问题(函数在某点未定义),因此在使用这种滑模面设计终端滑膜控制时,不可以设计 s ˙ \dot s s˙ ,即不能设计到达阶段,因此这种滑膜只适合用于一阶系统

  • 6
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LyaJpunov

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值