非奇异终端滑模控制(NTSM)

非奇异终端滑模控制(Nonsingular Terminal Sliding Mode Contral,NTSM)

在终端滑膜控制中,最后的部分我们抛出了奇异性的问题,所以在此基础上,我们提出非奇异终端滑膜控制,非奇异终端滑膜控制主要解决了终端滑模控制中的奇异性问题。

非奇异终端滑模的滑模面

s = x 1 + 1 β x 2 p q s = x_1 + \frac{1}{\beta}x_2^{\frac {p} {q}} s=x1+β1x2qp

其中, β > 0 \beta>0 β>0, p , q > 0 , ( p > q ) p,q>0,(p>q) p,q>0,(p>q) 为正奇数,且 1 < p q < 2 1 < \frac{p}{q} < 2 1<qp<2

控制器设计

考虑二阶不确定非线性系统
{ x ˙ 1 = x 2 x ˙ 2 = f ( x ) + g ( x ) u + d ( x ) \begin{cases} \dot x_1 = x_2 \\ \dot x_2 = f(x) + g(x)u + d(x) \end{cases} {x˙1=x2x˙2=f(x)+g(x)u+d(x)
其中 x = [ x 1 , x 2 ] T x = [x_1,x_2] ^ {T} x=[x1,x2]T d ( x ) d(x) d(x) 代表不确定的外部干扰,且有 d ( x ) ≤ D d(x) \le D d(x)D,即干扰有上界

对于二阶系统我们可以将滑膜面设计为
s = x 1 + 1 β x 2 p q s = x_1 + \frac{1}{\beta} x_2 ^ {\frac {p} {q}} s=x1+β1x2qp
非奇异滑膜控制器设计为
u = − g − 1 ( x ) ( f ( x ) + β q p x 2 2 − p q + ( D + ε ) s g n ( x ) ) u = -g^{-1}(x)(f(x)+\beta \frac{q}{p} x_2^{2 - \frac {p} {q}} + (D+\varepsilon)sgn(x)) u=g1(x)(f(x)+βpqx22qp+(D+ε)sgn(x))
稳定性分析,设李雅普诺夫函数 V = 1 2 s 2 V = \frac {1} {2} s^2 V=21s2,所以有 V ˙ = s s ˙ \dot V = s \dot s V˙=ss˙,将 u u u 带入可得
V ˙ = s ( x ˙ 1 + β − 1 p q x 2 p q − 1 x ˙ 2 ) = s ( x 2 + β − 1 p q x 2 p q − 1 ( f ( x ) + g ( x ) u + d ( x ) ) ) = s ( x 2 + β − 1 p q x 2 p q − 1 ( f ( x ) + g ( x ) ( − g − 1 ( x ) ( f ( x ) + β p q x 2 2 − p q + ( D + ε ) s g n ( x ) ) ) + d ( x ) ) ) = s ( x 2 + β − 1 p q x 2 p q − 1 ( f ( x ) − ( f ( x ) + β q p x 2 p q + ( D + ε ) s g n ( x ) ) + d ( x ) ) ) = s ( x 2 + β − 1 p q x 2 p q − 1 ( − β q p x 2 2 − p q − ( D + ε ) s g n ( x ) + d ( x ) ) ) = s ( β − 1 p q x 2 p q − 1 ( − ( D + ε ) s g n ( x ) + d ( x ) ) = β − 1 p q x 2 p q − 1 ( − ( D + ε ) ∣ s ∣ + s d ( x ) ) ≤ β − 1 p q x 2 p q − 1 ( − ε ∣ s ∣ ) \begin{align} \dot V &= s(\dot x_1 + \beta^{-1} \frac {p} {q} x_2^{\frac {p} {q} - 1}{\dot x_2}) \\ &= s(x_2 + \beta^{-1} \frac {p} {q} x_2^{\frac {p} {q} - 1}(f(x) + g(x)u + d(x))) \\ &= s(x_2 + \beta^{-1} \frac {p} {q} x_2^{\frac {p} {q} - 1}(f(x) + g(x)(-g^{-1}(x)(f(x)+\beta \frac{p}{q} x_2^{2 - \frac {p} {q}} + (D+\varepsilon)sgn(x))) + d(x))) \\ &= s(x_2 + \beta^{-1} \frac {p} {q} x_2^{\frac {p} {q} - 1}(f(x) - (f(x)+\beta \frac{q}{p} x_2^{\frac {p} {q}} + (D+\varepsilon)sgn(x)) + d(x))) \\ &= s(x_2 + \beta^{-1} \frac {p} {q} x_2^{\frac {p} {q} - 1}(- \beta \frac{q}{p} x_2^{2-\frac {p} {q}} - (D+\varepsilon)sgn(x) + d(x))) \\ &= s(\beta^{-1} \frac {p} {q} x_2^{\frac {p} {q} - 1}(- (D+\varepsilon)sgn(x) + d(x)) \\ &= \beta^{-1} \frac {p} {q} x_2^{\frac {p} {q} - 1}(- (D+\varepsilon)|s| + sd(x)) \\ &\le \beta^{-1} \frac {p} {q} x_2^{\frac {p} {q} - 1} (-\varepsilon |s|) \\ \end{align} V˙=s(x˙1+β1qpx2qp1x˙2)=s(x2+β1qpx2qp1(f(x)+g(x)u+d(x)))=s(x2+β1qpx2qp1(f(x)+g(x)(g1(x)(f(x)+βqpx22qp+(D+ε)sgn(x)))+d(x)))=s(x2+β1qpx2qp1(f(x)(f(x)+βpqx2qp+(D+ε)sgn(x))+d(x)))=s(x2+β1qpx2qp1(βpqx22qp(D+ε)sgn(x)+d(x)))=s(β1qpx2qp1((D+ε)sgn(x)+d(x))=β1qpx2qp1((D+ε)s+sd(x))β1qpx2qp1(εs)
根据上述分析可知 x 2 ≠ 0 x_2 \ne 0 x2=0 时,满足李雅普诺夫稳定条件。接下来需要分析的就是在之前的奇异点的问题,我们发现,将控制量带入到系统模型方程可得
x ˙ 2 = − β q p x 2 2 − p q + d ( x ) − ( D + ε ) s g n ( s ) \dot x_2 = -\beta \frac{q}{p}x_2^{2-\frac{p}{q}} + d(x) - (D+\varepsilon)sgn(s) x˙2=βpqx22qp+d(x)(D+ε)sgn(s)
x 2 = 0 x_2 = 0 x2=0 有:
x ˙ 2 = d ( x ) − ( D + ε ) s g n ( s ) \dot x_2 = d(x) - (D+\varepsilon)sgn(s) x˙2=d(x)(D+ε)sgn(s)
分析可知,此时当 s > 0 s>0 s>0 x 2 x_2 x2 快速减小,此时当 s < 0 s<0 s<0 x 2 x_2 x2 快速增加。所以可以在有限时间内实现 s = 0 s=0 s=0

收敛速度问题

该方法解决了奇异性问题,但是收敛速度问题并没有解决,在接近滑模面时的收敛速度仍然较慢。所以在此基础上提出了非奇异快速终端滑膜控制

  • 6
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
奇异终端滑模控制是一种在控制系统中使用滑模控制策略来实现稳定跟踪的方法。MATLAB是一种强大的数值计算和数据可视化工具,可以用于开发和运行滑模控制算法。 MATLAB提供了丰富的函数和工具箱,可以用于设计和实现奇异终端滑模控制器。在MATLAB中,我们可以从系统模型出发,设计出理想的滑模面,并通过选择适当的控制律来实现控制器的设计。MATLAB中的Control System Toolbox提供了许多用于系统建模和控制器设计的函数和工具,可以方便地进行奇异终端滑模控制器的设计和仿真。 使用MATLAB进行奇异终端滑模控制器设计时,我们可以首先建立系统的数学模型,并根据控制要求设计出合适的滑模面。然后,通过使用MATLAB中的函数和工具来计算滑模控制器的控制律,并通过仿真验证控制性能。MATLAB提供了丰富的绘图功能,可以将仿真结果可视化展示,有助于分析和评估控制性能。 MATLAB还提供了图形界面工具Simulink,可以用于实现奇异终端滑模控制器的实时控制。通过在Simulink中建立系统模型,并将奇异终端滑模控制器添加到模型中,我们可以方便地进行控制系统的实时仿真和测试。 总之,MATLAB提供了丰富的函数和工具箱,可以方便地进行奇异终端滑模控制器的设计、仿真和实现。使用MATLAB进行奇异终端滑模控制器设计可以提高工作效率,加快算法开发和验证的过程。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LyaJpunov

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值