使用Yalmip+matlab求解主从博弈(双层规划)问题 | 构建中遇到的问题(1)

使用matlab进行线性规划求解时,通常拥有如下的模型标准格式:
在这里插入图片描述
同时具有对应的规划求解表达公式为:

x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,options)

在求解过程中只需要把对应的f,A,b,Aeq,beq…等内容表达出来,再用上述表达公式加以求解即可。

上篇文章/使用Yalmip+matlab求解主从博弈(双层规划)问题 | 教程(二)提到的求解主从博弈模型时,具有代码

OO=-(details.b'*details.dual+details.f'*details.dualeq)+sum(price_s.*Ps_day-price_day_ahead.*Pb-price_b.*Pb_day);%目标函数

那么,其中的details.b details.dual等具体是什么呢?
打开变量’details’,可以看到关于details的各类信息,
在这里插入图片描述

其中info处具有如下内容:

min c'x 
s.t. Ax<b
     Ex=f

因此,我们可以将detail处的各类信息与文中表达式一一对应:

文中的目标表达式为:
在这里插入图片描述
内层的目标表达式为;
在这里插入图片描述
在这里插入图片描述

显然可以发现,目标函数中关于detail的内容可以与数学规模模型中的内容一一对应。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值