深度学习的学习与实践(1):从AE,VAE,到AAE

前置知识:自编码器入门

前段时间在改论文的过程中,审稿人给出了关于使用对抗自编码器算法的建议——2020.2
以上算是序

自编码器(autoencoder)是一种无监督学习神经网络

基本定义

本质上来说,自编码器是一种所谓”生成模型“,也就是根据给定的数据集去学习数据的分布函数,然后通过调整神经网络的参数使输出和原数据集尽量一致。一般的,自编码器的原型是一个单隐层的神经网络
单隐层神经网络
从输入层到隐层的过程可以理解为一个“编码”(encode)过程,即用更低维度的一组数据来特征化的表示原数据。而隐层到输出层的过程则可以看作一个“解码”(decode)过程,即从特征化数据中还原出原数据。整个网络一般通过最小化输出 X ^ \hat{X} X^与原输入 X X X之间的重构误差 L ( X ^ , X ) L(\hat{X}, X) L(X^,X)来进行训练。

自编码器的网络特征

自编码器所构建的神经网络一般有以下两个特征:
1.隐层神经元数必须比输入层少。因为隐层要起到编码,也就是压缩信息的作用,否则就起不到提取数据特征的目的,而变成了无意义的复制;
2.隐层通常并不是简单的单层结构。如果我们采用单隐层,那么当采用线性激活函数时,编码过程就变成了类似主成分分析降维效果,丢失掉一部分特征之间隐含的非线性关系。所以最好采用多层网络结构,留出足够储存隐含关系的空间

对抗自编码器

AAE(adversarial autoencoder)是一种改进型的自编码器算法,来源是这篇paper。它是一种对变分自编码器(VAE)和生成对抗网络(GAN)的结合,在变分自编码器的基础上引入了对抗网络,从而实现了使用对抗训练框架来实现对潜变量 z z z 的惩罚约束,替换了变分自编码器算法中复杂的基于变分贝叶斯推导和最小化KL散度的惩罚约束过程。

必要的补充:VAE

说实话原文paper是没怎么说明算法的具体细节的,对于没有学习过变分自编码器算法的人来说看起来就是一头雾水,所以需要顺便学习下VAE变分自编码器算是一种相当经典的生成模型。它所采用的“变分推断”(variational inference,参考知乎上一篇很好的回答)的方法适合于解决机器学习中的概率学习问题。
我们通过一般的生成问题来简单的梳理下变分自编码器的算法结构:

前提条件:已知真实样本 X X X, 需要推知随机变量 x x x的分布 p ( x ) p(x) p(x)

这样其实就是一个很典型的概率学习问题,而一般的生成问题其实都可以看作是概率问题。比如比较典型的图像生成问题,本质上就是通过现有的图像样本去学习生成图像数据的概率分布,然后通过得到的分布去生成更多的图像样本。
事实上,当我们说需要学习数据的概率分布时,我们会很自然的想到极大似然估计等参数估计方法。但是这些方法只有在给定概率分布的前提下才能使用。然而我们面对的问题中,不光概率分布的参数 θ \theta θ未知,概率分布本身 p p p也未知。
因此,为了解决这一问题,变分自编码器算法中引入了变分推断的方法。简单来说,所谓变分推断的方法就是,当我们想要得到随机变量 x x x的分布 p p p而无法直接得到时,我们就在另一个样本空间 Z Z Z中构建一个分布已知的中间变量(潜变量) z z z(比如高斯分布),然后通过映射得到 z z z的分布 q q q在样本空间 X X X中的映射分布。由于 z z z的分布 q q q是我们自己设定的,所以 z z z X X X中映射就是可控的,我们就可以使用分布 q q q去逐渐逼近 p p p从而达到尽可能得到真实分布 p p p的目的。那么AE和VAE的区别也就在于,变分推断的引入使得原本只能求解潜变量 z z z和原变量 x x x之间单值映射关系的AE变为了求解 z z z x x x之间分布 p p p q q q映射关系的VAE,从而能够实现更好的生成效果。关于为什么分布映射会比单值映射有更好的效果,参考下面一段文字

假如在AE中,一张满月的图片作为输入,模型得到的输出是一张满月的图片;一张弦月的图片作为输入,模型得到的是一张弦月的图片。当从满月的code和弦月的code中间sample出一个点,我们希望是一张介于满月和弦月之间的图片,但实际上,对于AE我们没办法确定模型会输出什么样的图片,因为我们并不知道模型从满月的code到弦月的code发生了什么变化
——引自blog《AE&VAE》

现在我们来简单梳理一下VAE的算法流程(这一部分巨™烦,但是搞懂对后续理解很有帮助

其结构和一般的自编码器类似,由encoder和decoder组成,而其特点则在于在loss(损失函数)的设计和参数更新的过程中采用了的变分推断的方法。算法流程大致如下:
1、先向encoder网络中输入样本 x i x_i xi,得到 q ϕ ( z ∣ x i ) q_\phi(z|x_i) qϕ(zxi)的充分统计量 μ \mu μ σ \sigma σ
2、由正态分布 q ϕ ( z ∣ x i ) q_\phi(z|x_i) qϕ(zxi)抽样得到 z i z_i zi
3、向decoder网络输入 z i z_i zi,得到重构样本 x i ^ \hat{x_i}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值