TSI: Temporal Scale Invariant Network forAction Proposal Generation

论文信息

ACCV 2020

研究背景(意义)

  • 忽略动作尺度问题,短动作的预测不是太好。召回率较低,可能是由于不平衡的正样本分布造成的。
  • 第二个问题是边界检测模块,目前的主要方法几种在局部信息和低层次信息上,忽略了全局背景。

创新点

利用时间上下文信息预测准确的动作边界,并回归准确的

  • 设计了一种新颖的损失函数,scale-invariant loss function,减少动作尺度变化的影响,解决短动作的不充分学习。

  • 边界评估模块:高精度保证的全局分支和高召回率保证的局部分支。
  • proposal评估模块:预测不同规模的proposal的准确完整性,引入scale-invariant 损失函数。

相关工作

        自上而下的proposal生成方法:一般是先初始化一个默认的proposal集合,这个集合一般是通过gt进行聚类来预定义,然后再用置信度回归。

方法部分

整体框架

Video Representation: 

给定一个未剪辑的视频X,proposal annotation 可以表示为:

 目的生成候选proposal集合:si是置信度,根据它来对proposal进行排序

 BMN

Temporal Scale Invariant Network

Boundary Detector:

提出问题:传统的方法认为,边界是一种局部信息,不需要过多关注事件背景或者是深层次的语义特征,所以他们有一个比较局限的感受野。

解决:实际上具有不同尺度的动作应该需要对应的感受野,所以需要获得局部和全局信息。

local branch:两个1D卷积,感受野比较小,专注于局部的突然变化,生成高召回率粗糙的边界,以覆盖所有的真实的开始和结束点,但精度比较低。

global branch:扩大感受野,U型网络呈现边界。使用多个卷积层,通过下采样来提炼不同粒度的语义信息。为了恢复特征的分辨率,再重复上采样,并把相同分辨率的特征串联起来。

IoU map Regressor:

proposal的置信度回归对于动作提名的生成也很重要。

采用BMN中的边界匹配机制,密集回归潜在的proposal置信度。本质上是一个ROI align层。

之后,每个proposal被预测为两个置信度分数,是由IoU分类损失和IoU回归损失监督的。分类损失忽略了动作尺度的影响,由Scale-Imbalance Loss监督。

Scale-Imbalance Analysis in Proposal Generation:

短动作检测能力差的原因:

               1. 粒度有限的特征表示不足,2.IoU评估指标导致的严格的边界重叠要求,3.不平衡的样本训练。

动作的尺度s指的是动作长度与视频长度的比值,因而s\in(0,1)

为了解决样本不平衡,损失函数要满足:1.每个gt对应的正样本数量应该被平等考虑。2.正负样本要平衡

Loss Function:

 wi,j 是 pi,j 的权重系数,bi,j是mask,说明一定的阈值下是否是正样本。

如果是一个正样本,且属于proposal \psi c,就把这个proposal的损失和\psi c总正样本数npos相除

 超参数\alpha大于0.5,SI-loss对负样本的权重更高,减少假的对正样本的反应。

实验

虽然讨论时序动作proposal生成的结果可以和分类的结果共同包含在detection任务中,但设计proposal的置信度排名需要好好设计。就比如DBG取得了最好的proposal生成性能,但detection的mAP却很低,原因是这两个任务的评价指标不相同,proposal的生成侧重于检索到proposal的多样性,通过排名前N的召回率来判断性能,但detection任务侧重于更顶级的精度,比如top 5。

可以提示我们,若要提升detection的性能,用proposal生成的结果再次学习,对proposal重新排序。例如PGCN。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值