LCS
一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。
动态规划的一个计算最长公共子序列的方法如下,以两个序列 X、Y 为例子:
设有二维数组 dp[i][j] 表示 X 的 i 位和 Y 的 j 位之前的最长公共子序列的长度
初始化dp[0][0]=0;
列出状态转移方程
dp[i][j] = max ( dp[i][j] ,dp[i-1][j-1]+1); 当 x[i-1] == y[j-1]
dp[i][j]=max(dp[i-1][j] , dp[i][j-1]); 当 x[i-1]!=y[j-1]
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
typedef long long ll;
const int xmax=1e4;
const int INF=1e9+7;
using namespace std;
char s1[xmax],s2[xmax];
int dp[xmax][xmax];
int main()
{
scanf("%s%s",s1,s2);
int len1=strlen(s1);
int len2=strlen(s2);
memset(dp,0,sizeof(dp));
for(int i=1;i<=len1;i++){
for(int j=1;j<=len2;j++){
if(s1[i-1]==s2[j-1])
dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
else
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
printf("%d",dp[len1][len2]?dp[len1][len2]:0);
return 0;
}