图神经网络框架DGL使用记录

本文记录了在学习和使用DGL框架进行图神经网络实践时遇到的问题及解决经验。首先强调了安装顺序,应先装PyTorch再装DGL,以避免包找不到的问题。接着指出,直接使用`pip install dgl`会安装CPU版本,若需GPU支持,应安装指定CUDA版本的DGL。作者还分享了版本选择的重要性,旧版本可能导致模型训练报错,建议使用最新版本如torch 1.10和DGL 0.6.1,以确保稳定性和兼容性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近跟着导师学图神经网络,开始看论文搭模型跑代码,用的DGL框架,一开始不熟悉这个框架被坑的有点惨,特此记录一下使用情况,避免其他学习的同学踩坑。

一、关于安装

一定先安装pytorch再安装dgl,因为dgl是依赖于pytorch,也不一定说你颠倒安装顺序就一定不对,但是可能容易出现一些包找不到的问题。

二、关于cpu和gpu

pip install dgl

这样默认安装的是cpu版本,没法调用GPU运算,安装GPU版本需要

pip install dgl-cu102
pip install dgl-cu100

dgl-cu102里面是目前最新的dgl的gpu版本,版本为0.6.1,dgl-cu100里面最高为0.5.3

三、关于版本

建议安装最新版本

torch==1.10 dgl-cu102==0.6.1 (安装GPU版本)
或者cpu版本
torcu==1.10 dgl==0.6.1

版本把我坑得很惨,一开始我安装的版本是torch=1.4.0,dgl-cu100=0.5.3,一开始处理的数据也能正常运行,但是使用的模型比较简单,就是简单的GCN,也能正常加载GPU运算,可结果我换成GAT的模型训练,加载数据到模型中就各种报错,报错得我怀疑人生,以为GAT不能处理异构图,可是考虑到GAT的原理和DGL的设计感觉是可以的啊,把我折腾了几天,然后不小心安装了最新版本,也就是torch=1.10 dgl-cu102=0.6.1,好家伙,读取数据后直接训练没有任何报错。可能是最新版本的DGL优化了一些细节问题。

建议用最新版本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值