(脑肿瘤分割笔记:十七)基于分级Dice Loss的精细全卷积神经网络的脑肿瘤分割

Title:Brain Tumor Segmentation Based on Refined Fully Convolutional Neural Networks with A Hierarchical Dice Loss

目录

Abstract(摘要)

Method(方法)

FCNN结构

多级损失函数


Abstract(摘要)

本文对经典的FCNN进行了一系列的调整来提高其在脑肿瘤分割任务上的性能,包括在卷积层之间添加更多的连接;在上采样层之后扩大解码器以及改变浅层信息的重用方式。除了在结构上进行修改。本文还提出了一种具有分级Dice Loss的新分类器,这个损失函数将多分类问题转换为多个二分类问题,从而抵消数据集的类不平衡问题。

脑肿瘤4种模态数据的特点:1)T1加权:操作简单常用于脑肿瘤结构分析,但其成像质量差无法提供有效的特征信息。

2)对比增强T1加权:在边界区域明亮,易于区分肿瘤和囊变区域

3)T2加权-水肿区域最为明亮,但是其对于脑脊液和肿瘤像素的区分较为困难。

4)液体衰减恢复脉冲(FLAIR):这个成像模态水肿区域边界明显

在本文中尝试在网络结构中的上采样和下采样路径中为基本的FCNN添加更多的连接。另一个调整是并联结构或者级联结构。一方面我们需要添加最大池化来扩大感受野,但另一方面,最大池化层会降低定位精度,因为它破坏了图像的空间结构体。因此提出了具有多个路径的新型网络。一个路径保留定位信息,另一个流包括最大池化层

Method(方法)

文章首先介绍了对网络结构的修改与调整,在第二部分本文应用了新类型的损失函数,包括自举损失,Dice Loss,和灵敏度-特异性损失函数,并且最终提出了一个受4个目标分类的包含关系启发的分层Dice Loss损失函数。

FCNN结构

使用的结构包括VGG,UNet等各种变体

1)VGG16+跳跃连接

这个网络在没有上三个全连接层的情况下,最终的特征图是通过附加样本层和具有 1x1 内核的卷积层来实现的,此外还采用了跳跃连接将来自不同上采样层特征图相加。

2)U-Net

UNet是医学图像分割中最经典的分割架构,这里不再叙述。

3)ResNet50+跳跃连接

这个网络被提出来用于解决训练过度深度CNN时产生的梯度消失和梯度爆炸的问题

4)ResUnet

这个网络将残差核进一步应用到UNet中,将残差堆栈替换UNet的卷积层。每个残差堆栈都由编码器和解码器中的两个卷积层组成,除了残差结构外,我们还在卷积层激活层之间插入了批量归一化。

多级损失函数

1)首先根据最初标记的每个像素,使用Softmax函数,使用常规交叉熵损失来制作5分类器,函数定义为

但是这5类很不平衡,大多数像素损失较低

2)为了缓解这种严重的类不平衡问题,最简单的方法就是为每个类赋予权重(也就是给权重较少的类更大的权重)其中权重之和等于1,公式为

 

但是这种方法的难点在于各类别权重的最佳分布是什么,如果选择不当会造成过度平衡

3)自举损失:这个损失函数是丢弃最差的像素进行训练,公式如下

公式中的t是一个阈值,当括号内的条件成立时,中括号的值等于1,否则等于0

4)灵敏度-特异性损失:敏感性和特异性是评估分割结果时两个主要指标,通过最小化加权敏感性和特异性的数量,将它们加入损失函数,公式为

其中r是1或0的标签,P是概率,λ是平衡这两个分量的权重

 5)Dice Loss,使用Dice Loss代替4)的效果更好

6)总分类 Dice Loss

 4)和5)都可以在某种程度上平衡数据集。Dice Loss为二进制分类设计,因此考虑将多重分类转换为多重二元分类

目标分类任务层会演化具有包含关系的类,保留FCNN的5通道输出层,将其扔到softmax激活层,将5个标记类的相应概率相加,然后得到3个目标概率(P0,P1,P2),它们分别代表整个肿瘤(标签1,2,3,4的总和),肿瘤核心(标签1,3,4的总和)和增强肿瘤。公式为

可以根据以下4个公式根据某一像素点的3个概率列出非肿瘤,完全肿瘤,肿瘤核心以及增强肿瘤

则最终总的分级损失函数为

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值