Title:One-pass Multi-task Networks with Cross-task Guided Attention for Brain Tumor Segmentation
目录
Absract(摘要)
类不平衡问题是脑肿瘤分割问题中的主要挑战之一。模型级联是一种流行的解决这个问题的方案。模型级联通过运行一组深度模型进行从粗到细的分割。但是这种方法的一个缺点就是忽略了级联各个模型之间的相关性。本文提出的OM-Net网络针对此问题可以更好的解决类不平衡问题。
OM-Net方法概括
首先OM-Net将单独的分割任务集成到一个深度模型中,这个模型由用于学习联合特征的共享参数和用于学习判别特征的任务特定的参数组成,利用任务之间的相关性来设计在线训练数据传输策略及训练策略。此外提出了在任务之间共享预测结果,为此设计了跨任务引导注意模块(CGA)通过前一个任务提供的预测结果的指示,CGA模块可以基于特定类别的统计数据自适应的校准通道特征效应。
类不平衡问题就是健康组织和肿瘤组织之间以及肿瘤内类别之间通常会出现的严重的比例不平衡问题。
模型级联和OM-Net的区别
模型级联是为每个任务训练一个单独的网络,然后依次连接。两个网络的结果如下图
而本文提出的OM-Net是将三个任务合并一个模型当中。此外模型在训练过程中不是一直一起训练三个任务,而是逐步将任务按难度递增的顺序添加到OM-Net中,这有利于提高模型收敛的质量。
方法(Method)
A:基于模型级联的基本架构
脑肿瘤分割分解为三个独立但相互关联的任务:
任务1:完整肿瘤结构的分割
任务2:完整肿瘤以及肿瘤内类别的精细分割