(脑肿瘤分割笔记:四十八)广义 Wasserstein 骰子分数、分布式鲁棒深度学习和用于脑肿瘤分割的 Ranger

目录

Title:Generalized Wasserstein Dice Score,Distributionally Robust Deep Learning,and Ranger for brain tumor segmentation:BraTS 2020 challenge

摘要-Abstract

方法:改变深度神经网络优化的三个主要成分

2.1改变针对于每个样本的损失函数:广义Wasserstein Dice损失

2.2改变优化问题:分布鲁棒优化(DRO)

2.3更改优化器:Ranger

2.4深度神经网络的集成


Title:Generalized Wasserstein Dice Score,Distributionally Robust Deep Learning,and Ranger for brain tumor segmentation:BraTS 2020 challenge

摘要-Abstract

训练深度神经网络包含4个主要成分的优化问题:即深度神经网络的设计,每个样本的损失函数,总体的损失函数,以及优化器。最近对于脑肿瘤分割方法的开发,往往只是关注了神经网络的架构设计,而对于其他三个方面关注的较少。本文不对网络进行进一步的修改使用3D UNet,但尝试使用非标准的单样本损失函数,广义 Wasserstein Dice损失,非标准总体损失函数,对应于分布鲁棒优化,以及一个非标准优化器Ranger(广义Wasserstein Dice损失是每个样本的损失函数,它允许利用BraTs中标记的肿瘤区域的层次结构。分布鲁棒优化是经验风险的最小化概括,它解释了数据集中存在代表性不足的子域。Ranger是广泛使用的Adam优化器的推广,其在小批量和嘈杂的标签时更稳定)

方法:改变深度神经网络优化的三个主要成分

深度神经网络的训练包括以下优化问题,用公式表示为

其中h是参数为\Theta的深度神经网络,L是平滑的逐像素损失函数,(xi,yi)是训练数据集。Xi代表输入的四种模态数据,Yi是真实手动风格标签

2.1改变针对于每个样本的损失函数:广义Wasserstein Dice损失

广义的Wasserstein Dice Loss是Dice Loss的泛化,用于多类分割,可以利用层次结构。

当体素的标记不明确或神经网络难以正确预测时,广义的Wasserstein Dice损失旨在支持语义上更合理的错误。形式上,ground-Truth类概率图p和预测的类概率图\widehat{p}之间的广义Wasserstein Dice损失定义为

其中W^{M}(\widehat{p_{i}},p_{i})是在体素i处预测的\widehat{p_{i}}和真实标签Pi之间的Wasserstein距离。M是距离矩阵,将最大标签距离设置为1,对应于背景类与所有其他类之间的距离。类之间的距离反映了肿瘤区域,肿瘤类之间的距离都小于1,因为它们具有更多的共同点。广义的Wasserstein Dice损失允许通过考虑所有类间关系同时优化BraTS数据集中标记的重叠区域和非重叠区域

2.2改变优化问题:分布鲁棒优化(DRO)

DRO旨在通过明确考虑训练数据集分布中的不确定性来提高神经网络的泛化能力。例如在BraTs数据集中,我们不知道不同的的数据采样中心是否具有相同的表示。这可能导致深度神经网络在训练数据集中代表性不足的子域上表现不佳。DRO模块旨在通过鼓励神经网络在整个训练数据集上更一致的执行来缓解这个问题。

具体来说,DRO由最大值-最小化问题定义

在式子中引入了一个新的未知的概率向量参数q,1/n1代表均匀概率向量,Dkl是KL散度。式子中的Dkl(...)是一个正则化项,它度量q和均匀概率向量1/n1之间的不相似度,对应于给每个样本分配相同的权重1/n。

2.3更改优化器:Ranger

Ranger是一种用于训练深度神经网络的优化器,它由深度学习优化领域的两个最新贡献组合而成RAdam和lookhead优化器。

RAdam是Adam优化器的改进版,旨在减少Adam在训练早期自适应学习率的方差,Lookhead是指数移动平均法的推广,旨在加速神经网络的其他优化器的收敛。Lookhead需要为深度神经网络的权重保留两组值。一组快速权重,一组慢速权重。LookHead可以看做是一个可以与任何深度学习优化器结合的包装器。

2.4深度神经网络的集成

本小节主要讨论使用不同的深度学习优化算法对分割进行集成的作用。不同的深度学习优化算法可以提供相似的良好分段,它们可能有不同的偏差,并会犯不同的错误。在这种情况下,不同模型的集成可以使优化方法的选择导致的不一致平均化,从而提高分割性能和鲁棒性。

总结:本文使用分布式鲁棒优化,广义Wasserstein  Dice Loss和Ranger 优化器可以提高nnUnet的分割平均性和鲁棒性,这三个特征是互补的,通过整合三个神经网络实现了最佳分割性能。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: Wasserstein距离(Wasserstein distance),也称为Earth Mover's Distance(EMD),是一种用于衡量两个概率分布之间差异的指标。它是用来描述平面上两个分布之间的最小运输成本,其中运输成本被定义为将一个分布中的质量从一个位置(即坐标)移到另一个分布中对应的位置所需的代价,代价可以是任何可测量的数量,如欧几里得距离或曼哈顿距离等。Wasserstein距离是一种更加稳健和可靠的距离度量方法,尤其适用于高维空间和非凸形状的分布。 ### 回答2: Wasserstein距离,又称为地面距离(Earth Mover's Distance,EMD),是一种用于度量两个概率分布之间的差异的指标。这个距离度量方法源自运输问题的数学描述。 假设我们有两个概率分布P和Q,它们分别表示两个不同的集合上的概率密度函数。Wasserstein距离用于度量将一个分布变成另一个分布所需的最小平均“移动距离”。 具体来说,Wasserstein距离将两个分布之间的差异看作是将一个分布中的质量从一个点转移到另一个点所需的最小工作量。每个点的质量可以通过其对应的概率密度函数值来表示。从一个点到另一个点的移动距离可以通过两个点之间的距离来衡量。 因此,Wasserstein距离计算的是使得从一个分布P到另一个分布Q的平均移动距离最小化的最优运输方案。这个距离的计算方法考虑了两个分布的整体形状和分布的差异,并且不受单个峰值点的影响。 Wasserstein距离在计算机视觉、图像处理、机器学习等领域中得到广泛应用。它可以用于图像生成模型的评估、图像检索、风格迁移等任务。与传统的KL散度或JS散度相比,Wasserstein距离能够更好地保留分布之间的几何性质,具有更好的稳定性和鲁棒性。 总之,Wasserstein距离是一种度量两个概率分布之间差异的有效方法,它通过考虑运输问题的最优解来度量分布之间的差异。 ### 回答3: Wasserstein距离(Wasserstein distance),也称作Earth Mover’s Distance(EMD),是一种用于度量两个概率分布之间的差异的指标。它是由德国数学家瓦瑟斯坦(Wasserstein)在20世纪60年代提出的。Wasserstein距离考虑了从一个分布变成另一个分布的最小运输成本。 Wasserstein距离的计算方法比较复杂,需要利用线性规划方法来解决,但其思想基本上是在计算从一个分布将质量从一个点转移到另一个点的成本。它可以解释为“将一个分布中的一堆土堆移到另一个分布中所需要的最小工作量”。 Wasserstein距离与其他距离度量方法相比具有一定的优势。首先,它可以应用于高维空间以及概率分布的无穷维空间。其次,Wasserstein距离在处理两个分布具有重叠部分时仍然能够提供有意义的比较结果。而且,Wasserstein距离还具有较好的数学性质,它能够形成一个度量空间,满足距离度量的基本特性,例如非负性、对称性和三角不等式。 Wasserstein距离在很多领域都有广泛的应用,例如图像处理、机器学习、计算机视觉等。在图像处理中,通过计算两个图像的Wasserstein距离,可以用于图像匹配、图像生成等任务。在机器学习领域,Wasserstein距离可以用来度量两个概率分布的相似性,进而用于分类、聚类等问题。 总之,Wasserstein距离是一种有力的概率分布之间距离度量的方法,它通过计算从一个分布变成另一个分布的最小运输成本,能够更好地揭示两个分布之间的差异和相似性,具有广泛的应用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值