1. 首先需要先查看nvcc的位置
which nvcc
2. 查看现使用的cuda版本。
nvcc --version
或者如下。相信大部分同学conda创建环境是为了解决cuda和torch的对应关系问题。
python -c "import torch; import torch.utils; import torch.utils.cpp_extension; print(torch.utils.cpp_extension.CUDA_HOME)"
python -c "import torch; print(torch.__version__)"
python -c "import torch; print(torch.version.cuda)"
此时有一定概率,两者显示的cuda版本不一样。
如果不影响后续开发,可以以import torch时显示的版本为准继续后续工作。
如果你和我一样安装其他库时,报了cuda版本不对应的问题,就继续往下看吧!
配置cuda环境变量
1. 找到家目录下的.bashrc文件,查看是否有以下内容
#保证conda内torch安装的依赖cuda版本和此处指明的一致
export PATH=/usr/local/cuda-11.8/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH
如果你在用编译的方法安装库时报错
pip install -e .
一部分原因可能编译的代码中有乱码需到网页中替换。
一部分原因也为需要在环境变量中指明cuda版本