朴素贝叶斯

本文介绍了朴素贝叶斯的基础知识,包括事件的独立性、概率、条件概率和联合概率的概念,并详细阐述了朴素贝叶斯分类算法的原理,通过求解给定特征下样本属于某一分类的概率来预测类别。此外,还提供了算法的实践代码链接。
摘要由CSDN通过智能技术生成

一、概率知识

1.朴素贝叶斯中,朴素指事件相互独立,此为前提
2.概率:事件A发生的概率表示为: P(A)
3.条件概率: 一定条件下事件发生的概率,如P(A|B)表示在事件B发生的条件下,A发生的概率
4.联合概率: 事件A和事件B同时发生的概率表示为: P(AB)
比如,一个袋子里有3个红球,2个白球,随机抽一个球为红球的概率 P(抽到红球)=3/5,不放回抽,第一次已经抽到红球,则第二次抽到红球的概率 P(第二次抽到红球|第一次抽到红球)=2/4,第一次抽到红球且第二次抽到红球的概率为 P(第一次抽到红球&第二次抽到红球)=3/10
联合概率与条件概率有如下关系:P(AB)=P(A|B)P(B)=P(B|A)P(A)
全概率公式: P ( B ) = ∑ P ( A i ) P ( B ∣ A i ) P(B)=\sum P(A_{i})P(B|A_{i}) P(B)=P(Ai)P(BAi)
贝叶斯公式: P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ) ∑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值