1 简介
聚类Clustering : 将数据集中的样本划分为若干个通常不相交的子集,每个子集称为簇(cluster)。
簇cluster:A group of objects that are similar to other objects in the cluster ,and dissimilar to data points in other clusters
一组与集群中其他对象相似,但与其他集群中的数据点不同的对象称为簇
2 聚类应用
(1)出版社
• 自动分类新闻内容
• 建议类似的文章
(2)医疗
• 表征病人的行为
(3)生物
• 聚类遗传标记以识别家庭纽带
(4)零售\市场
• 识别顾客购买的方式
• 推荐新书和新电影给顾客
(5)银行
• 支票的检测
• 识别用户群
(6)保险
• 索赔分析中的欺诈检测
• 顾客的投保风险
3 选择聚类方法的情况
(1)探索性数据分析
(2)总结概要
(3)离群值检测(outlier detection)
(4)查重
(5)预处理步骤
4 聚类算法
(1)基于分区的聚类
• 相关高效,用于中等或者大型数据集
• K-means 、K-Median 、Fuzzy c-Means
(2)层次聚类
• 产生树的聚类
• 凝聚算法(Agglomerative algorithm)分割算法(Divison algorithm)
(3)基于密度的聚类算法
• 产生任意形状的簇
• DB scan算法