【文献学习】Deep-Waveform: A Learned OFDM Receiver Based on Deep Complex Convolutional Networks

全文翻译
系统实现详细介绍
原作者源码下载

标红部分是当前没有看明白的部分,如果有看明白的人,可以评论或者私信我,一起讨论。等我后期看明白,会补充上

1 介绍

创新点:该模型既包含密集层和卷积层,大部分都被线性激活,还包含残差和跳过连接的新结构。此外利用Tensorflow 中实现了复杂数的卷积层以处理复杂的IQ数据,而不是将其视为两个独立的实数。
第一个训练阶段:在AWGN信道中,DCCN接收机获得了与传统OFDM接收机相当的性能,
第二个训练阶段:在Rayleigh信道的中,低信噪比条件下优于传统的OFDM接收机

2 模型

在论文的OFDM发送机模型中没有使用信道编码,为了更好的专注于较低的PHY。

2.1 技术点

1、复数卷积操作

实际的FC层能够实现一半大小的复杂FC层。复数层可以由一个高维度的实数卷积层和两个卷积核实现,最后一维度是实部和虚部。
在这里插入图片描述

2、复数的线性变换

因为实部和虚部是正负两个状态,通过将复数视为两个独立的实数来对IQ数据使用tanh激活。

3、复数的非线性变换

非线性操作在bit和IQ域之间, 在解调中,IQ数据仅被视为2个实数,并且LRelu仅对实数操作。

2.2 接收机实现

分为两个阶段,一个阶段是实现OFDM高斯信道接收机,另一个阶段实现LS算法信道均衡器的模块
这种设计方法不是指定每个层的功能,而是通过利用领域知识来确保基本的LS估计量至少在深度学习的搜索空间中复数层(没有懂这句话)
在这里插入图片描述

1、DCNN-接收机

第一部分:把时域的OFDM符号转换成频域。CP-Drop是去循环前缀的操作。然后通过一个复数卷积层
第二部分:提取OFDM帧中的所有数据部分,有一个全连接层实现
第三部分:把IQ信号转成比特流,从而实现信号的解调。把实部和虚部拆开两部分,分别传入到两个实数卷积层中,并利用LRelu激活,然后合并两串数据为一串数据,传入全连接层,通过LRelu激活函数,最后一层经过softmax输出比特流。
在这里插入图片描述

2、DCNN-均衡器

第一部分:模仿时域和频域转换,
第二部分:实现信道估计。首先通过全连接层提取导频,接下来又通过一个全连接层实现LS算法估计,接下来的四个全连接层实现估计先前估计的残差。把以上LS估计的和四个全连接估计的残差经过合并Concat后,经过三个实现插值的全连接层,再通过2维的卷积层,最后Reshape数据
第三部分:是通过复数除法实现的频域信道均衡
第四部分:是把CP加回去
在这里插入图片描述

2.3 训练步骤

采用了TensorFlow的图形编辑技术(这点本人没懂)
第一步:在阶段1中DCCN接收器在AWGN信道中进行了训练。 无衰落。 训练完成后,将保存训练后的DCCN接收器(带有参数的流程图),并关闭TensorFlow会话。
第二步:阶段2中首先初始化第二个TensorFlow会话以进行图形编辑。 加载预训练的DCCN接收器,并在DCCN接收器之前并插入了DCCN均衡器。 然后,由于必须在不同的会话中进行图形编辑和训练,因此将保存已编辑的流程图并关闭第二个会话。
第三步:将初始化第三次会话,并加载先前的流程图以进行训练。
在这里插入图片描述

2.4 训练技巧

(这点没懂,没有代码不能理解这些步骤)
(1)Mini-batch =512OFDM符号 =64的OFDM帧,最小化其高IO延迟
(2)在基于NumPy的OFDM发射机和衰落模块的编程中,对数据处理进行了矢量化处理,避免了大循环
(3)学习率最初设置为0.001,然后每2.5个episode或者500steps后下降2%

(4)每个训练episode包含200个mini-batch,并针对40个SNR点中的每个点测试2000帧的比特(-10至29 dB,以1dB为步长)
注意:由于我们无法使用所有可能的训练标签进行训练,而是为每个episode生成随机bit,因此我们使用episode而不是epoch(所有训练数据都经过一次迭代)
在这里插入图片描述

2.5 训练信噪比

推荐值;5dB
实验:3dB在更少的训练集有更优的性能
(以下步骤没懂)
在m进制的调制中,较低的信噪比训练可能导致系统误差,为了最小化系统误差,在训练中使用了低和高SNR设置的组合。 对于多进制调制,基本SNR设置为3m dB。 在阶段1,对于每8个OFDM帧,有4个SNR为3m dB的帧,1个3m-3 dB的帧和3m + 5 dB的3个帧。 这种组合有助于提高训练效率,同时最大程度地减少系统错误。 在阶段2,SNR偏移为[-3; 0; 0; 3; 6; 9; 12; 训练中每8个OFDM帧17 dB]。 在这种配置下,信道估计器在训练过程中会暴露于宽范围的SNR中。 这是因为导频信号在不同的SNR处携带不同数量的信道信息,因此在狭窄的SNR范围内训练的信道估计器很可能过度适合特定的SNR范围

3 模型参数

发送机参数如下
调制方式:BPSK、QPSK、8QAM、16QAM、对比实验
信道估计方法:LMMSE、LS
插值方法:Spline 、Linear
信道:瑞利衰落+高斯噪声
在这里插入图片描述

4 实验分析

(1)带CP的DCCN接收器性能优于传统接收机,但在高SNR上,优越性减弱
(2)不带CP的DCCN接收器在高SNR方面比传统的性能较弱
(3)8-QAM的DCCN稍弱于其他方式的调制
(4)R-Conv层无助于解调。 但可以加快训练速度
(5)对于更高的调制阶数,FC层无法仅基于IQ数据或非线性激活的IQ数据执行解调。

5 局限

高信噪比和更高的调制阶数下达不到传统系统的精度

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值