使用深度学习进行序列分类

该博客展示了如何使用LSTM网络对序列数据进行分类,通过Waveform数据集训练网络,探讨了序列填充对性能的影响,并实现了训练和测试流程,最终得出分类准确度。
摘要由CSDN通过智能技术生成

目录

加载序列数据

准备要填充的数据

定义 LSTM 网络架构

训练 LSTM 网络

测试 LSTM 网络


此示例说明如何使用长短期记忆 (LSTM) 网络对序列数据进行分类。

        要训练深度神经网络以对序列数据进行分类,可以使用 LSTM 网络。LSTM 网络允许您将序列数据输入网络,并根据序列数据的各个时间步进行预测。

        此示例使用 Waveform 数据集。此示例训练 LSTM 网络来识别给定时间序列数据的波形类型。训练数据包含四种波形的时间序列数据。每个序列有三个通道,且长度不同。

加载序列数据

        从 WaveformData 加载示例数据。序列数据是序列的 numObservations×1 元胞数组,其中 numObservations 是序列数。每个序列都是一个 numChannels×-numTimeSteps 数值数组,其中 numChannels 是序列的通道数,numTimeSteps 是序列的时间步数。标签数据是 numObservations×1 分类向量。

load WaveformData 

        在绘图中可视化一些序列。

numChannels = size(data{1},1);

idx = [3 4 5 12];
figure
tiledlayout(2,2)
for i = 1:4
    nexttile
    stackedplot(data{idx(i)}',DisplayLabels="Channel "+string(1:numChannels))
    
    xlabel("Time Step")
    title("Class: " + string(labels(idx(i))))
end

如图所示:

        留出测试数据。将数据划分为训练集(包含 90% 数据)和测试集(包含其余 10% 数据)。要划分数据,请使用 trainingPartitions 函数,此函数作为支持文件包含在此示例中。要访问此文件,请以实

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值