【随机过程】作业 3 数学期望

1. 设X服从期望为2方差为1 的正态分布,则求E(X|X>0)
在这里插入图片描述

2. 若X服从参数为10 的t分布,则 X 4 X^4 X4的数学期望为多少?
解:
由题知:X服从n=10的t分布,则X~ Z Y / n \frac{Z}{\sqrt{Y/n}} Y/n Z,其中Z服从正态分布Z~N(0,1),Y服从卡方分布Y~ x 2 ( n ) x^2(n) x2(n),且Z也服从n=1的卡方分布,Z~ x 2 ( 1 ) x^2(1) x2(1)

则当n=10时, X 2 = Z 2 Y / 10 = Z 2 / 1 Y / 10 X^2 = \frac{Z^2}{Y/10} =\frac{Z^2/1}{Y/10} X2=Y/10Z2=Y/10Z2/1可以发现 X 2 X^2 X2是服从F分布的。表示为 X 2 X^2 X2~ F ( 1 , 10 ) F(1,10) F(1,10)

F分布,当X~ Y / m Z / n \frac{Y/m}{Z/n} Z/nY/m,表示为X~F(m,n)且F分布的均值为当n>2时是 E ( X ) = n n − 2 E(X) = \frac{n}{n-2} E(X)=n2n,当n>4方差是 D ( X ) = 2 n 2 ( m + n − 2 ) m ( n − 2 ) 2 ( n − 4 ) D(X) =\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} D(X)=m(n2)2(n4)2n2(m+n2)

所以根据公式 E X 4 = E 2 ( X 2 ) + D X 2 EX^4=E^2(X^2)+DX^2 EX4=E2(X2)+DX2只需要求出 X 2 X^2 X2的均值和方差即可求得 E X 4 EX^4 EX4
E ( X 2 ) = 10 / ( 10 − 2 ) = 5 / 4 E(X^2)=10/(10-2)=5/4 E(X2)=10/(102)=5/4
D ( X 2 ) = 2 ∗ 1 0 2 ( 1 + 10 − 2 ) 1 ∗ ( 10 − 2 ) 2 ( 10 − 4 ) ≈ 4.6875 D(X^2) =\frac{2*10^2(1+10-2)}{1*(10-2)^2(10-4)} \approx 4.6875 D(X2)=1(102)2(104)2102(1+102)4.6875
所以 E X 4 ≈ 6.25 EX^4 \approx 6.25 EX46.25
3. 设随机变量(X,Y)的概率密度函数为
f X Y ( x , y ) = A s i n ( x + y ) , 0 ≤ x ≤ π 2 , 0 ≤ y ≤ π 2 f_{XY}(x,y)=Asin(x+y),0 \leq x \leq \frac{\pi}{2},0\leq y\leq \frac{\pi}{2} fXY(x,y)=Asin(x+y),0x2π,0y2π

  • 求系数A
  • 求X的均值 m X m_X mX
  • 求X的方差 σ X 2 \sigma ^2_X σX2
  • 求X和Y的相关系数 ρ X Y \rho_{XY} ρXY
    解:
    (1)
    1 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = ∫ 0 π / 2 ∫ 0 π / 2 A s i n ( x + y ) d x d y 1 = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy = \int_{0}^{\pi /2}\int_{0}^{\pi /2}Asin(x+y)dxdy 1=++f(x,y)dxdy=0π/20π/2Asin(x+y)dxdy
    = ∫ 0 π / 2 ( ∫ 0 π / 2 A s i n ( x + y ) d x ) d y = \int_{0}^{\pi /2}(\int_{0}^{\pi /2}Asin(x+y)dx)dy =0π/2(0π/2Asin(x+y)dx)dy
    = − ∫ 0 π / 2 ( A c o s ( x + y ) d x ) ∣ 0 π / 2 d y =- \int_{0}^{\pi /2}(Acos(x+y)dx)|_0^{\pi /2}dy =0π/2(Acos(x+y)dx)0π/2dy
    = ∫ 0 π / 2 ( − A c o s ( π / 2 + y ) + A c o s y ) d y = \int_{0}^{\pi /2}(-Acos(\pi /2+y)+Acosy)dy =0π/2(Acos(π/2+y)+Acosy)dy
    = 2 A = 2A =2A
    所以A=1/2
    (2)第一步,求出X的概率密度函数
    f X ( x ) = ∫ 0 π / 2 1 / 2 s i n ( x + y ) d y = − 1 / 2 [ c o s ( π 2 + x ) − c o s x ] f_X(x)=\int_0^{\pi/2} 1/2sin(x+y)dy\\=-1/2[cos(\frac{\pi}{2}+x)-cosx] fX(x)=0π/21/2sin(x+y)dy=1/2[cos(2π+x)cosx]
    根据公式求均值
    m x = E x = − 1 / 2 ∫ 0 π 2 x c o s ( π 2 + x ) − x c o s x d x = π / 4 mx = Ex =-1/2 \int_0^{\frac{\pi}{2}}xcos(\frac{\pi}{2}+x)-xcosx dx\\ = \pi /4 mx=Ex=1/202πxcos(2π+x)xcosxdx=π/4

(3)根据公式求解 X 2 的 期 望 X^2的期望 X2,代入第二问中的 f X ( x ) f_X(x) fX(x)
E x 2 = ∫ 0 π / 2 x 2 f X ( x ) d x = 1 / 2 ∫ 0 π / 2 x 2 ( s i n x + c o s x ) d x = π 2 + π 2 8 − 2 Ex^2 = \int_0^{\pi /2}x^2f_X(x)dx\\= 1/2 \int_0^{\pi /2}x^2(sinx+cosx )dx\\=\frac{\pi}{2}+\frac{\pi ^2}{8}-2 Ex2=0π/2x2fX(x)dx=1/20π/2x2(sinx+cosx)dx=2π+8π22
σ X 2 = D X = E x 2 − ( E x ) 2 = π 2 + π 2 8 − 2 − ( π / 4 ) 2 \sigma ^2_X = DX = Ex^2-(Ex)^2\\ = \frac{\pi}{2}+\frac{\pi ^2}{8}-2 - (\pi /4)^2 σX2=DX=Ex2(Ex)2=2π+8π22(π/4)2
(4)求解相关系数的公式如下
ρ X Y = c o v ( X , Y ) D X D Y = E X Y − E X E Y D X D Y \rho _{XY} =\frac{cov(X,Y)}{\sqrt{D_X} \sqrt{D_Y}} = \frac{E_{XY}-E_XE_Y}{\sqrt{D_X} \sqrt{D_Y}} ρXY=DX DY cov(X,Y)=DX DY EXYEXEY
所以现在需要求出 E X Y E_{XY} EXY

E X Y = ∫ 0 π / 2 ∫ 0 π / 2 1 / 2 x y s i n ( x + y ) d x d y E_{XY} = \int_0^{\pi/2}\int_0^{\pi/2} 1/2xysin(x+y)dxdy EXY=0π/20π/21/2xysin(x+y)dxdy
求解得到
E X Y = π 2 − 1 E_{XY} = \frac{\pi}{2}-1 EXY=2π1
又根据第三问的结果,知道
D X = σ X 2 DX = \sigma ^2_X DX=σX2
因为X,Y对称,所以 D X = D Y D_X=D_Y DX=DY
所以把 D X , D Y , E X Y 代 入 D_X,D_Y,E_{XY}代入 DX,DY,EXY得到相关系数
ρ X Y = E X Y − E X E Y D X D Y \rho _{XY} = \frac{E_{XY}-E_XE_Y}{\sqrt{D_X} \sqrt{D_Y}} ρXY=DX DY EXYEXEY
4. 设(X,Y)的联合概率密度函数为
f ( x , y ) = { 21 4 x 2 y , x 2 ≤ y ≤ 1 0 , o t h e r s w i s e f(x,y)=\begin{cases} \frac{21}{4}x^2y, &x^2 \leq y \leq 1\\ 0 ,& otherswise \end{cases} f(x,y)={421x2y,0,x2y1otherswise

  • 求给定条件Y=y(0<y<1)的条件下, X 2 X^2 X2的期望 E ( X 2 ∣ Y = 1 ) E(X^2|Y=1) E(X2Y=1)
  • 求方差 D ( X 2 ∣ Y = 1 ) D(X^2|Y=1) D(X2Y=1)
  • 设随机变量X的密度函数 f ( x ) = ∣ x ∣ , ∣ x ∣ < 1 f(x)=|x|,|x|<1 f(x)=x,x<1,求X的特征函数g(1)
    解:
    (1)
    当 y ≤ 1 时 f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x = ∫ − 1 1 21 4 x 2 y d x = 7 2 y 当y\leq 1 时f_{Y(y)} = \int_{-\infty}^{+\infty}f(x,y)dx= \int_{-1}^{1}\frac{21}{4}x^2ydx =\frac{7}{2}y y1fY(y)=+f(x,y)dx=11421x2ydx=27y
    所 以 , 当 y ≤ 1 时 f ( x ∣ y ) = f ( x , y ) f Y ( y ) = 3 2 x 2 所以,当y\leq 1时f(x|y) =\frac{f(x,y)}{f_{Y(y)}} = \frac{3}{2}x^2 y1f(xy)=fY(y)f(x,y)=23x2
    E ( X 2 ∣ Y = y ) = ∫ − ∞ + ∞ x 2 f ( x ∣ y ) d x = ∫ − 1 1 3 2 x 4 d x = 3 5 E(X^2|Y=y) =\int_{-\infty}^{+\infty}x^2f(x|y)dx = \int_{-1}^{1}\frac{3}{2}x^4dx =\frac{3}{5} E(X2Y=y)=+x2f(xy)dx=1123x4dx=53

(2)因为根据公式
E ( X 4 ∣ Y = y ) = ∫ − 1 1 x 4 f ( x ∣ y ) d x = ∫ − 1 1 x 4 ∗ 3 2 x 2 d x = 3 / 7 E(X^4|Y=y) = \int_{-1}^{1}x^4f(x|y)dx\\= \int_{-1}^{1}x^4*\frac{3}{2}x^2dx = 3/7 E(X4Y=y)=11x4f(xy)dx=11x423x2dx=3/7
所以
D X 2 = E X 4 − ( E X ) 2 = 3 / 7 − ( 3 / 5 ) 2 = 0.0686 DX^2 = EX^4-(EX)^2\\=3/7-(3/5)^2 = 0.0686 DX2=EX4(EX)2=3/7(3/5)2=0.0686

(3)连续性随机变量的特征函数公式
g ( t ) = ∫ − ∞ + ∞ e i t x f ( x ) d x g(t) = \int_{-\infty}^{+\infty}e^{itx}f(x)dx g(t)=+eitxf(x)dx
g ( 1 ) = ∫ − 1 1 e i x ∣ x ∣ d x g(1) = \int_{-1}^{1}e^{ix}|x|dx g(1)=11eixxdx
根据欧拉公式 e ( i t x ) = c o s t ( x ) + i s i n ( t x ) e^{(itx)} = cost(x)+isin(tx) e(itx)=cost(x)+isin(tx)
∫ − 1 1 e i x ∣ x ∣ d x = ∫ − 1 1 ∣ x ∣ ( c o s x + i s i n x ) d x \int_{-1}^{1} e^{ix} |x| dx =\int_{-1}^{1}|x|( cosx+isinx )dx 11eixxdx=11x(cosx+isinx)dx
因为|x| isinx 是奇函数,所以 ∫ − 1 1 ∣ x ∣ i s i n x d x = 0 \int_{-1}^{1}|x| isinx dx = 0 11xisinxdx=0,则
g ( 1 ) = ∫ − 1 1 ∣ x ∣ c o s x d x = ∫ − 1 0 x c o s x d x + ∫ 0 1 x c o s x d x g(1) = \int_{-1}^{1}|x| cosxdx = \int_{-1}^{0}x cosxdx +\int_{0}^{1}xcosxdx g(1)=11xcosxdx=10xcosxdx+01xcosxdx
= 2 ( c o s 1 + s i n 1 − 1 ) = 0.7635 = 2(cos1+sin1-1) = 0.7635 =2(cos1+sin11)=0.7635

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值