博弈学习笔记

引用自博弈
博弈是信息学和数学试题中常会出现的一种类型,算法灵活多变是其最大特点,而其中有一类试题更是完全无法用常见的博弈树来进行解答。 寻找必败态即为针对此类试题给出一种解题思路。
1、博弈模型为两人轮流决策的非合作博弈。即两人轮流进行决策,并且两人都使用最优策略来获取胜利。
2、博弈是有限的。即无论两人怎样决策,都会在有限步后决出胜负。
3、公平博弈。即两人进行决策所遵循的规则相同。
4、游戏结果唯一。即游戏结束时,一定会有一个胜利,一个失败,没有中间态。

胜败状态的设定

我们假定任何一个状态不是必胜态就是必败态
无法进行任何操作的状态是必败态。
可以经过操作到达必败态的状态是必胜态。
不管如何操作,只能到达必胜态的状态是必败态。
在这里插入图片描述

胜败状态的性质

若面临末状态者为获胜则末状态为胜态,否则末状态为必败态。
一个局面是胜态的充要条件是该局面进行某种决策后会成为必败态。
一个局面是必败态的充要条件是该局面无论进行何种决策均会成为胜态。

巴什博弈

问题描述:
一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

解答
显然可以得到:当n<=m时,先手必胜,可以一次直接取走。
当n= =m+1时,因为n∈ [1,m]时都是必胜状态,
所以n=m+1时为必败状态
思考共性。
显然对于任意的n来说,都可以写成n==(m+1)r+z。其中r,z∈Z,z<=m
当z= =0时有:无论先手取多少,假设为x,后手都可以取到m+1-x。
问题就转化成n= =(m+1)
(r-1)。以此类推,显然可以得到后手必胜。
当z!=0时有:先手可以取走z个,此时后手面对的问题是n==(m+1)*r
由问题的对称性可以得到,此时先手必胜。
至此,问题讨论完毕。也就是说当:n==(m+1)*r时有后手必胜,否则先手必胜。
例题:hdu 2149
引用自 hdu 2149 Public Sale

题解
很明显的巴什博弈,除了要求输出一下选择方式之外就是裸题了,然后加一下输出就行,输出也好弄,首先当然是判断是否是先手必胜啊,如果是的话就判断是否是一手就成功,一次成功就顺次输出就行,否则就弄一下能转移到必败状态的方式,能造成必败状态就是必胜的,直接输出就行。

代码

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;

int main()
{
    int n,m;
    while(~scanf("%d %d",&m,&n))
    {
        if(m<=n)
            for(int i=m; i<=n; i++)
            {
                cout<<i;
                if(i!=n) cout<<' ';
                else cout<<endl;
            }
        else
        {
            if(m%(n+1)==0) cout<<"none"<<endl;
            else
            {
                int t = m-m/(n+1)*(n+1);
                if(t<=n) cout<<t;
                t+=(n+1);
                while(t<=n)
                {
                    t+=n+1;
                    cout<<' '<<t;
                }
                cout<<endl;
            }
        }
    }
}

威佐夫博弈

问题描述:
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品
规定每次至少取一个,多者不限,最后取光者得胜。

解答:
我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量,并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。也就是前面提到的,必败状态。
前几个奇异局势是(0,0),(1,2),(3,5),(4,7),(6,10),(8,13),(9,15),(11,18),(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k。

奇异局势的性质
1.任何自然数都包含在一个且仅有一个奇异局势中。
2.任意操作都可将奇异局势变为非奇异局势。
3.采用适当的方法,可以将非奇异局势变为奇异局势。

解答
奇异局势的判定:当且仅当ak =[k(1+√5)/2],bk= ak + k

证明:
威佐夫博弈满足黄金分割证明
例题:
取石子游戏 POJ1067
题解
POJ1067

nim博弈

问题描述:
有n堆各若干个物品,两个人轮流从某一堆取任意多的物品,
规定每次至少取一个,多者不限,最后取光者得胜。

解答
结论:当前状态的异或和为0时,是必败状态,否则是必胜状态。
证明:只需要证明其满足三条性质即可。

位计算

游戏结束状态是必败态。
显然,对于nim游戏来说游戏结束是必败态。

必胜状态有一个后继是必败状态。
对于任意一个局面(a1,a2,an)来说,假设Xor(a1,a2,an) = b;(b!=0)
那么一个容易得到的结论是a1-an中一定存在一个值ax使得ax>b^ax。
所以我们将这个ax经过一次操作之后可以变成ax^b,那么对于当前局面
来说,存在一个后继是(a1,a2,ax^b,an),而且根据异或的性质有
Xor(a1,a2,ax^b,an) = b^b = 0。也就是说当前状态的一个后继是必败
状态,所以当前状态是必胜状态。

必败状态无法移动到必败状态
我们采用反证法
假设必败状态可以转化为必败状态。
假设当前局面为(a1,a2,ax,an),且Xor(a1,a2,ax,an)=0的一个后继为
(a1,a2,ax-t,an),且Xor(a1,a2,ax-t,an) = 0。其中t为小于等于ax的任意正整数。
根据异或的传导性,我们将上面两式取异或可以得到。
Xor(a1,a2,ax,an)^ Xor(a1,a2,ax-t,an) = 0^0
因为a^a = 0,所以有左式为ax^(ax-t),右式为0.左右显然不等。
得出矛盾,所以原命题成立。

Sprague-Grundy函数

SG函数和SG定理【详解】

问题的引入:游戏的和
在通常情况下,我们不会直接的问你某个游戏的解是多少,
更乐意问的一种方式是:游戏的和。
什么是游戏的和?
有根说明了游戏有一些初始状态。
有叶说明了游戏有终止状态。
无环说明了游戏的不可逆性。
如果这么定义游戏的话,那么我们研究的任何决策性游戏,
都可以分解为,节点在树上走过的路径。
例如:前面讲的威佐夫博弈中,任何一个局势都可以看作是树上的一个节点。
如下图所示:

在这里插入图片描述
按照我们刚刚的说明,我们研究的任何一个博弈游戏,都可以看作是点在博弈树上走过的路径。所以我们不妨将游戏转化为树上行走的问题。
游戏的新定义:给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移动者判负。其中顶点表
示一个游戏状态,边表示一次操作。
游戏的和:对于不同内容的多个游戏,假设第一个游戏内容是{G1},第2个
为{G2},,,,第n个为{Gn},那么我们定义游戏的和为:任选一个子游戏
并进行一次操作,也即组合游戏{G} = {G1∪G2∪G3∪…∪Gn}.
对于任何一个子游戏,显然有唯一一个SG值来确定游戏状态,我们不妨将所有的子游戏看作是一堆堆的石子。那么根据SG函数的性质可以容易得到:
设SG(Gn)表示游戏Gn的游戏状态,那么有SG(G) = SG(G1)^ SG(G2) SG(Gn).
也就是说对于多个游戏进行组合,我们依然是对于每个子游戏单独求解其
对应的SG值,然后异或得到最终的解。

SG值的计算
定义:SG(x)的值等于所有x的后继的SG函数中没有出现的最小非负整数
例如:威佐夫博弈中,不能操作的状态是(0,0),它没有后继,也就说它的后继集为空集,即next{(0,0)} = Ø。所以这个状态的SG值为0.
对于局势(0,1)来说,它的后继有一个,即next{(0,1)} = {(0,0)},所以
SG{(0,0)} = mex(0) = 1.
对于局势(1,1)来说,它有两个后继,即next{(1,1)}={(0,0),(0,1)},所以
SG{(1,1)} = mex({0,1}) = 2.

以此类推。
(mex(n)除n外最小的自然数)

计算方法
因为SG值的一些特殊性,我们有很多方法求解,某个局面对应的SG值。
比较推荐的做法:记忆化搜索。
因为当前的状态是基于所有后继产生的,所以我们先标记出必败状态,
然后一步步向上推广,最后得到当前状态的解。

例题 Fibonacci again and again hdu 1848

题解 hdu 1848 Fibonacci again and again

斐波那契博弈(Fibonacci Nim)

结论:当n为Fibonacci数的时候,必败。

f[i]:1,2,3,5,8,13,21,34,55,89……

例题:HDU2516:取石子游戏

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值