2. 气固流态化的多尺度模拟
流化床中的气固流动出了名的难以建模。这主要是由于物理定律所在的微尺度与介尺度之间,乃至于与我们希望理解的宏观现象之间的时空鸿沟的存在。这一鸿沟的存在意味着给出多尺度模拟策略是必要的。无数以CFD为基础的方法已经被提出,以期能够给在不同时空尺度探索气固流动的水动特性。在模型发展的早期,这些模型各自独立发展,用于模拟给定时空尺度的水动特性,如Fig. 2所示。这些方法之间没有任何耦合。遵循Li and Kwauk(2003)所用术语,我们把这称作描述性多尺度模拟。这些方法的基本思想和优缺利弊将在随后介绍。
Fig. 2. 气固流态化的描述性多尺度模拟,其特征为不同方法之间互无关联。直接数值模拟,该截图经授权由Qingang Xiong博士提供;离散颗粒方法,CFD-DEM模拟、粗粒化CFD-DEM模拟、MP-PIC模拟,分别来自Bian et al.(2019), Ge et al.(2019b) 和 Jiang et al.(2014); 动力学方法,截图来自Kong and Fox(2017;连续方法,显式解析模拟引自 Wang et al.(2010a), 隐式模拟截图经授权引自Bona Lu 博士。在这些模拟方法中,颗粒颗粒用离散方法、动力方法或者连续方法描述。气体被体积平均的NS方程或者直接数值模拟(或直接解析)的NS方程所描述。气体和颗粒通过边界处的无滑移边界条件或者是曳力模型耦合。
本世纪初起,一大批被称作相关多尺度方法(遵循Li and Kwauk(2003)所用术语)涌现而出,如Fig. 3所示。离线和单向耦合是其主要特征。在相关多尺度方法中,进行大量低层级模拟用以生成高层级模拟所需的本构关系。这些本构关系通常使用低层级模拟所得数据,以拟合关系式或者校准模型的方式的形式出现。稍后将看到,许多本文提及的本构关系都是根据这种方式获得的。例如。DNS获取的本构关系可以用于离散颗粒法(通常是相间曳力关系式),动力方法(通常是颗粒速度分布函数和单个颗粒尺度的颗粒-流体相互作用力模型,参看Eq(20)),连续方法(通常是相间曳力关系式,固相应力,气相波动和颗粒温度方程中固相波动(Eq.(43)中的 n m < F m ⋅ C m > n_m<F_m \cdot C_m> nm<Fm⋅Cm>.)的关系式,以及,如需必要的话,气相湍流模型)),离散颗粒法(但不包括DDPM和MP-PIC)可以用于获取连续方法的颗粒相应力。当然,离散颗粒法也可以用于获取连续模型中的有效相间应力,如滤波方法的一些研究所示。连续基显式解析方法可以用于获取连续几粗网格模拟中所需的本构关系,这是滤波方法中常常采用的一种做法。
Fig. 3. 相关多尺度模拟策略,以代表性模拟方法为例(DNS,CFD-DEM, 连续方法)。离线和单向耦合是其主要特征。大量低层级模拟用以生成高层级模拟所需的本构关系。
此时此刻,也许有必要稍微离题来讨论下相关多尺度方法实用中的局限性。在大多数已有研究中,低层级模拟在有限尺寸下的周期性的小盒子内开展,用于生成本构关系。但是这些模拟真的能代表一个大尺度模拟的子区域吗?答案恐怕为否。第一,真正大尺度流化床的雷诺数比周期性盒子中的雷诺数大数个量级,我们不能期盼两个差异如此之大的系统拥有相同的水动特性。第二,在周期性盒子区域当中,壁面效应完全被忽略了。然而,周所周知,壁面的存在会导致较大的剪切率(尤其是在循环流化床提升管当中),这会对介尺度结构特性乃至获取的本构关系产生较大影响。此外,全局水动模式或结构(例如固体循环结构和核心-环形结构)和微尺度以及介尺度结构之间的相互作用被忽略了。第三,我们最近未发表的CFD-DEM研究发现,特征速度关系长度根据计算域的尺度而线性放大。然而,目前尚不清楚周期性盒子模拟中这种气固悬浮物的大空间关系的意外的放大规则是否反常,亦或物理上正确。但是,根据针对低雷诺数非布朗颗粒的流-固流动的广泛类似研究,这些意外的放大规则,由于周期性盒子模拟的局限性,是非物理的。上述所有陈述意味着使用周期性盒子模拟可能会导致偏差的甚至非物理的结论,因此,使用周期盒子模拟来提取本构关系式时应当十分谨慎。另一方面,提得一提的是,这些使用周期性计算域的局限性并不是相关多尺度方法所本来具有的。
为了解决异质气固流动的动态耦合本质,变分多尺度方法被提出。该方法的关键特征是:单独动力(或守恒)方程组本身是不充足的,一个代表相互竞争的主导机制的折中的稳定性条件是描述异质气固流动的水动特性所必须的。如Fig. 4所示,本方法不仅在尺度方面解析所研究的系统,并描述不同尺度的现象和不同尺度之间的相互关系,结果是动力(或守恒)方程组;还在主导机制方面解析该系统,结果是稳定性条件或者系统的变分判据。将变分判据整合入守恒方程组最终会成为复杂系统的变分多尺度方法公式。当该方法应用于气固CFD模拟时,就变成了著名的基于EMMS的方法,其细节将在第4节讨论。
Fig.4 气固流态化的变分多尺度法,不同尺度的动态耦合和需要稳定性条件为其必要特征。引自Li and Kwauk(2003)
在物理上,气固流动是动态、双向耦合的,不仅是从小尺度到大尺度的耦合,而且从大尺度到小尺度也是。因此,需要在不同尺度上动态双向耦合的方法。针对不同仿真方法在线双向耦合的需要,近年来提出来一种新的多尺度模拟策略,被称为动态多尺度方法,如Fig. 5所示。DNS与DPM之间东塔AI耦合的关键是如何相互传递气相动力学,因为不同方法采用了不同的尺度分辨率来求解气相方程;DPM与连续模型之间的动态耦合的关键是如何在离散量与连续量之间相互映射,因为在DPM中,颗粒被单独追踪,我们计算每个粒子的位置和速度,然而,在连续介质模型中,粒子被假定为连续介质,我们计算其平均固体浓度,平均速度和颗粒温度。显然,在DNS与连续模型的动态耦合中,这两个关键问题都需要被解决。此外,在动态多尺度方法中,必须保证变量(如应力张量)的平稳过度以及质量、动量和能量的守恒。动态多尺度方法可以利用分区耦合的方法来实现,其中在有效区域使用高层级的方法(如连续方法),并在高层级失效的区域使用低层级的方法(如CFD-DEM),他们通过重叠区域的参数动态交换来进行耦合。同样地,分区耦合方法也被用于实现纯颗粒流中的DEM法和粗粒化DEM法的在线和双向耦合,以及气固两相流中粗粒化CFD-DEM和MP-PIC法的耦合。实现动态多尺度方法的另一种途径是利用高层级方法模拟整个计算域,然后要么在高层级方法失效的子区域,要么在研究的重点区域,实施低层级方法模拟,从而获得更精细的仿真。最后,从低层级模拟中提取出有效相间曳力和有效颗粒相应力等模拟结果,反馈给高层级的模拟,以实现更精确的模拟。
代表性的模拟方法的动态多尺度模拟策略(直接数值模拟,CFD-DEM法和连续模型),在线和双向耦合是其基本特点。在该策略中,不同方法在同一个仿真中同时求解,以充分采纳各种方法的优点,摒弃缺点。
2.1 直接数值模拟
描述气固流态化系统的数学模型可以在不同的近似水平上进行定义,以获得所要求的精度。最基本的近似水平是所谓的(粒子解析的,PR)直接数值模拟(DNS),其中所有相关的气体时空尺度都被解析,粒子的运动被单独追踪,粒子和气体在流体-粒子交界处通过无滑移边界条件进行耦合。文献中存在着许多方法,可以按照不同的气相求解器(如格子玻尔兹曼法,光滑粒子流体力学法和基于NS方程的有限体积/差分/单元法),不同的粒子求解器(如离散单元法,硬球模型)和不同的相间耦合方法(如浸入边界法,虚拟域法)来划分 (Hu,
1996; Ladd and Verberg, 2001; Ge and Li, 2003; Takagi et al.,2003; Uhlmann, 2005; Ma et al., 2006; van der Hoef et al., 2008;Deen and Kuipers, 2014; Tenneti and Subramaniam, 2014;Hashemi et al., 2017; Maxey, 2017; Elghobashi, 2019)。直接数值模拟技术目前由于计算消耗太大,并不适合工业应用,而是主要用于模型发展(例如发展新的曳力关系式和传热传质关系式)(van der Hoef et al., 2008;Tenneti and Subramaniam, 2014; Zhu et al., 2019a),理解气固流动物理 (Balachandar and Eaton, 2010)和探索新机制(如证明气固流动的稳定性条件) (Li et al., 2004; Li et al., 2013)。
2.2 离散颗粒法
在更高层级的近似水平上,被称为离散颗粒法(DPM)(Tsuji et al., 1993; Hoomans et al., 1996;Deen et al., 2007; Zhu et al., 2007; Zhu et al., 2008; Zhong et al.,2016; Ge et al., 2017b)的方法在流态化领域内大受欢迎。在离散颗粒法当中,平均方程用于追踪颗粒的流体力学,但是颗粒相仍像DNS一样被完全解析。离散单元法,硬球法或者其他相似的技术用于追踪颗粒-颗粒和颗粒-壁面的交互,而流体相和颗粒相的相互作用通过一个相互作用力项来实现,这一项通常代表压力梯度力项和相间曳力项的加和。注意,其他的力,例如 时程力和附加质量力则通常在CFD模拟中被忽略,尽管他们有可能对气固流动行为产生很大的作用(Olivieri et al., 2014; Daitche, 2015)。 并行离散颗粒法有可能能触碰到少部分小规模工业流化床的门槛,但是对绝大多数实际应用来说,例如流化催化裂化装置,则远远超出了离散颗粒法的能力范围。
虽然相较于DNS来说,其气相是粗粒化描述的,已经大大节约了计算量,但是由于粒子在DPM中是单独跟踪的,DPM的计算量仍然十分之高。为了降低DPM算法的计算量,人们提出了几种牺牲精度以换取计算量下降的方法。直接模拟蒙特卡洛法(DSMC)已经用于降低追踪固体颗粒运动的计算成本。它使用数值粒子或者包裹来代替一组碰撞的真实粒子,并引入了数值粒子之间碰撞的概率密度。然而,用以获得统计上可靠的集合所需的粒子数目会随着颗粒体积分数和介尺度结构的形成而增加。另外一些研究人员倾向于替代性改进,他们使用了包裹或者数值粒子的概念,但是其中不同的包裹之间的交互细节是通过DEM的方式实现的,而不是DSMC中的概率碰撞。根据用于实现从真实粒子到数值包裹的粗粒化过程的方法的不同,已经发展了不同的几种方法,例如虚球模型 (Kazari et al., 1995; Sakano et al., 2000),粗粒模型(Sakai et al., 2010; Sakaiet al., 2012; Sakai et al., 2012; Sakai et al., 2014),相似粒子组装法(Kuwagi et al., 2004; Mokhtar et al., 2012)和其改进 (Benyahia and Galvin, 2010),标度离散元法 (Link et al., 2009; Sutkar et al., 2013),离散聚类法(Liu et al., 2006; Liu and Xu, 2009),相似原理法 (Liu et al., 2013),粗粒等能量法(Chu et al., 2016),EMMS-DPM法 (Lu et al., 2014; Lu et al.,2016; Zhang et al., 2019) ,粗粒时间驱动硬球法 (Lu et al., 2017b),参见 Ge et al. (2017b) 和Lu and Benyahia (2018)的综述文章。可以通过使用包裹概念,亦或使用作用力项来代表颗粒-颗粒或者颗粒-壁面之间的相互作用,来实现进一步的简化。这就是商业软件FLUENT(Popoff and Braun, 2007; Zhou et al., 2016)中的稠密离散相法(DDPM),以及CPFD软件公司的商业软件Barracuda当中的MP-PIC法。DDPM和MP-PIC法都可以比经典的DPM法计算效率更高,这不仅仅是因为计算粒子的数目更少,还因为,相较于经典DPM法,模拟中允许更大的时间步。然而这些前途光明的方法的分辨率仍需进一步测试。应该强调,MP-PIC法的理论基础正是颗粒相的动力学方程,因此,他可以(或者更应该)被分类为在数值上采用颗粒求解的动力学方法。使用粗粒DPM法,我们能够模拟真正工业用途流化床的流体力学,同时保证颗粒的离散性,因此可以十分方便地实现颗粒尺寸分布,并且可以排除许多与连续描述相关的假设,而这正是粗粒化DPM相较于连续模型的优点。
2.3 动力学方法
动力学方法(或者基于矩的动力学方法)用于模拟气固流动流体力学是早已提出的了(Desjardins et al., 2008; Fox, 2008; Dan et al., 2009; Passalacqua et al., 2010; Chen et al., 2012; Marchisio and Fox, 2013;Passalacqua and Fox, 2013)。在此方法中,气相上,与离散颗粒法一样,平均方程用于追踪气相的水动特性,颗粒相方面,则采用动力学方程进行追踪(例如玻尔兹曼法),其数值解法是采用矩方法的(Grad, 1949; Grad, 1958; Struchtrup, 2005; Torrilhon, 2016)。从非平衡热力学的观点来看 (Müller and Ruggeri, 1998; Jou et al., 2010),除了连续介质理论中使用的状态变量(有效密度,颗粒速度和颗粒温度),矩方法推广了应力张量,热通量和其他高阶通量(如其他必要的独立状态变量)。相应地,除了NS方程量级连续介质理论中常用的质量、动量和伪能量方程以外,还导出了应力张量、热通量和其他高阶通量的输运方程。
动力学方法相较于连续方法有更广的适用范围,尤其是对于稀疏气固流动的研究来说。实际上,连续理论可以被视作是最简单的矩方法,其中前五个矩被追踪,包括用于有效密度的一个零阶矩,用于速度矢量的三个分量的三个一阶矩和用于颗粒温度的一个二阶矩。矩方法的精度原则上取决于所追踪的矩的数量。但不行的是,矩方法的结果是一个未封闭的且未限定的方程链。对于一个特定的问题,不能提前确定到底应该追踪多少个矩。在实践当中,必须引入截断方程链的方法,例如 Kong et al. (2017) 使用了十个矩,而Passalacqua and Fox (2013)的方法需要20个矩, Yuan and Fox, (2011)的条件积分法则需要36个矩。当需要追踪大量的矩时,其计算量就会非常大,甚至比DPM法还要高。此外,前沿的矩方法是基于玻尔兹曼方程的有效性的,因此,它不适用于玻尔兹曼方程主要假设(分子混沌和二元碰撞)失效的极稠密气固流动。气固流动模型中矩方法的现状综述可参看Fox (2012)。再次强调,动力学方程也在数值上使用颗粒方法来求解(Andrews and O’Rourke, 1996; Snider, 2001;Subramaniam, 2013)。
2.4 连续方法
在乃至于更高的层级上,欧拉欧拉法,或者说连续方法 (Anderson and Jackson, 1967; Sinclair and Jackson,1989; Ding and Gidaspow, 1990; Gidaspow, 1994; Enwald et al.,1996; Jackson, 2000; Syamlal and Pannala, 2011; Lu, 2017)被用于气固流动的建模。本构规律,考虑/不考虑摩擦应力的颗粒流动力学理论,或者半经验的颗粒相应力关系式,以及从液体流化床或填充床,亦或从直接数值模拟获得的相间曳力关系式,这些都是基于单元格内部结构近似均匀的假设的。因此,必须显式解析气体流化床中的介尺度结构(气泡或团簇)(Wang, 2009; Wang et al., 2010c; Wang et al., 2011a; Fullmer and Hrenya, 2016; Fullmer and Hrenya, 2017)。这在概念上类似于单相流中对湍流的直接数值模拟。然而鉴于巨大的计算成本,这样的要求对于大规模或者工业规模的流化床模拟几乎是不可能的。在实际应用中,在模拟大型气体流化床的时候,采用了粗网格的模拟,因此,介尺度结构或部分介尺度结构不再被显式解析了,而利用合适的介尺度或者亚格子尺度的本构关系来表现这些介尺度结构的效果 (Li and Kwauk, 1994; Sundaresan, 2000; Agrawal et al., 2001; Zhang and Vanderheyden, 2002; Xiao et al., 2003; Yang et al., 2003; Wang, 2009; Li et al., 2013; Özel et al., 2013; Schneiderbauer and Pirker, 2014b; Sundaresan et al., 2018),正如大涡模拟(LES)在单相湍流模拟中所做的那样。这其中有不同的方法,例如滤波两相流模型 (Igci et al., 2008; Özel
et al., 2013; Schneiderbauer and Pirker, 2014b; Sundaresan et al.,2018)和基于EMMS的方法 (Xiao et al., 2003; Yang et al.,2003; Wang and Li, 2007; Wang et al., 2008)。除了类DNS和类LES方法,雷诺平均NS(RANS)方程组(Dasgupta et al., 1994; Hrenya and Sinclair,1997; Zhou, 2002; Fox, 2014; O’Brien, 2014; Fox, 2017)也用于研究气固流动,其中湍流模型用于模化气固流动中湍流扰动的效果,不同湍流模型的详细的优缺利弊和文献综述请参看 (Fox, 2014; Fox, 2017; Zhou, 2018)
2.5 基于介尺度结构的多尺度方法
介尺度结构(颗粒团或气泡)产生于非线性的气固相互作用,耗散的颗粒-颗粒相互作用,和所研究系统中不同的主导机制的折中(Li and Kwauk, 1994; Sundaresan, 2003; Li et al., 2013; Fullmer and Hrenya, 2017; Ge et al., 2019a)。鉴于介尺度的气泡和团簇的关键作用,有些方法直接关注介尺度结构的解析或建模。我们强调,在本节中,介尺度结构(气泡或团簇)是模型发展的最小单元,而在前述章节中,颗粒是最小单元。通常,在气液流动–volume of fluid法–中,使用直接数值模拟来追踪气泡在喷动流化床中的运动。与离散颗粒法相似,使用离散气泡法或者离散团簇法来追踪介尺度气泡或颗粒团簇的运动。在连续尺度上,对于模拟大型流化床来说,将床内分为可以相互渗透的稀疏相和稠密相,或气泡相和乳浊相 (Krishna and van Baten, 2001; Wang et al., 2012)。对于循环流化床中提升管的的情况,可以通过进一步假设所有颗粒都处于稠密相来进行简化,对于鼓泡流化床,则认为颗粒都处于乳浊相 (Gu and Chen, 1998; Gu, 1999; Krishna and van Baten, 2001; Huilin et al., 2005; Shuyan et al., 2008; Gao et al., 2013; Zhou et al., 2014c; Zhao et al., 2015; Zhao et al., 2016a)。
总而言之,气固多相流的多尺度模拟概念已经被牢牢确立。不同的方法解决不同的时空尺度的水动特性,没有一种方法是可以解决所有问题的。研究人员应该根据所研究系统的物理本质,所需精度,和可用计算资源等来选择合适的方法。
翻译博文跳转目录
本文翻译进行过程中将分为多个文章。最后全文翻译完成后将汇总到一起并且放出可供下载的markdown文件。
此处为跳转目录:
一、摘要和目录
二、第一节 引言
三、第二节 气固流态化的多尺度模拟