把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1。
示例 1:
输入:[3,4,5,1,2]
输出:1
示例 2:
输入:[2,2,2,0,1]
输出:0
算法流程:
初始化: 声明 left, right 双指针分别指向 numbers 数组左右两端;
循环二分: 设 mid = (left + right) / 2为每次二分的中点( “/” 代表向下取整除法,因此恒有left<=m<right ),可分为以下三种情况:
1.当 numbers[mid] > numbers[j]时: mid 一定在 左排序数组 中,即旋转点 x 一定在[mid + 1,right]闭区间内,因此执行 left = mid + 1;
2. 当 numbers[mid] < numbers[j]时: mid 一定在 右排序数组 中,即旋转点 x 一定在[left, m]闭区间内,因此执行 right= mid;
3.当 numbers[mid] = numbers[j]时: 无法判断 mid 在哪个排序数组中,即无法判断旋转点 x 在[left, m]还是[mid + 1,right]区间中。解决方案: 执行 right = right - 1 缩小判断范围。
返回值: 当 left = right时跳出二分循环,并返回 旋转点的值 numbers[left]即可。
int minArray(vector<int>& numbers)
{
int left = 0;
int right = numbers.size() - 1;
if (right==0)
{
return numbers[0];
}
while (left<right)
{
int mid = left + (right - left) / 2;
if (numbers[mid]>numbers[right])
{
left = mid + 1;
}
else if (numbers[mid]<numbers[right])
{
right = mid;
}
else if (numbers[mid]== numbers[right])
{
right--;
}
}
return numbers[left];
}